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1 Preliminaries

The purpose of this section is to present key concepts that we will need to use indiscriminately in later
sections. Let us keep it brief and proof-free to maximise efficiency. It is assumed that anyone hoping to
make sense of this note has taken a first course in group theory, and knows, for example, the definition of a
group. We typically write group operations multiplicatively, because most of the groups we deal with will
be nonabelian (and it is ridiculous to say 0 + 1 ≠ 1 + 0 additively).

1.1 Subgroup structures

Given a subgroup � ≤ �, the relation “G ∼ H if and only if GH−1 ∈ �” defines an equivalence relation.
The equivalence classes are called the left (resp. right) cosets of � in �, and are G� = {Gℎ : ℎ ∈ �} (resp.
�G = {ℎH : ℎ ∈ �}). Denote by |� : � | the index of � in �, the number of left (resp. right) cosets. From
this, we get

Theorem 1.1 (Lagrange’s theorem). If � ≤ � are finite groups, |� | divides |� |.

Call |� | the order of �. For ( ⊂ �, let 〈(〉 denote the subgroup of � generated by (. When ( = {G},
then 〈(〉 = {G= : = ∈ N}. Define the order of G ∈ � as ord(G) =

��〈G〉��.
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A group � is called abelian if GH = HG for all G, H ∈ �. A group � is called cyclic if � = 〈G〉; it is clear
that every cyclic group is abelian. It is less clear, but true, that every subgroup of a cyclic group is cyclic.

A corollary to Lagrange’s theorem is that the order of any element divides the order of the group, so
|� | = = implies 6= = 1. We say a group is torsion if every element has finite order, and torsion-free if every
element has infinite order.

An exercise in elementary combinatorics says

Proposition 1.2. If |� | is even, � has an element of order 2.

The following theorem can also be proven combinatorially,

Theorem 1.3 (Cauchy’s theorem). If a prime ? divides the order of �, then � has an element of order ?.

1.2 Important examples of groups

Since we will mostly only study finite groups, the reader should be familiar with the following examples.

(1) For each = ∈ N, the finite group Z= is the set of integers modulo = with addition; this is cyclic.

(2) Z×= , the set of nonzero integers coprime to = is a multiplicative group of order q(=), where q is the
Euler totient function. This is abelian, but not always cyclic1.

(3) An important related group is the Klein-four group, Z2 × Z2, denoted by +4.

(4) The symmetric group of order =, denoted Sym(=) or (= is the group of permutations of = elements.
For = ≥ 3, this is nonabelian. |(= | = =!.

For distinct elements 01, . . . , 0: ∈ [=], let (01 . . . 0:) denote the permutation in (= that sends 08 →
08+1 for 1 ≤ 8 ≤ : , (where 0:+1 := 01), and fixes all other elements of [=]/ The permutation (123),
for example, denotes the permutation that sends 1 → 2, 2 → 3, 3 → 1, and fixes all other elements.
A permutation f ∈ (= is called a :-cycle if it is of the form (0102 . . . 0:). A permutation g ∈ (= is
called a transposition if it is a 2-cycle.

Exercise 1. Disjoint cycles commute.

Exercise 2. Every permutation in (= has a cycle decomposition into a product of disjoint cycles, and this is
unique upto reordering.

Exercise 3. The order of a permutation is the least common multiple of the cycle lengths in its cycle
decomposition. A permutation c ∈ (= has prime order ? if and only if it is the product of disjoint cycles of
length ?.

(5) The alternating group of order =, �=, is the subgroup of all permutations that can be written as a
product of an even number of transpositions.2 |�= | = =!/2.

1Z×= is cyclic if and only if = = 2, 4, ?: or 2?: for an odd prime ? and : ∈ N.
2This definition conceals a nontrivial fact – that the transpositions generate (=, and that each element is the product of either

and even or an odd number of transpositions, but not both.
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(6) The dihedral group of order =, which we will denote by �= – although some books write �2= – is
the group of symmetries of a regular =-gon. This is generated by the rotation A and the reflection B,
satisfying

�= = 〈A, B | A= = B2 = 1, AB = BA−1〉.

It is clear from the definition that �= is nonabelian. Further, |�= | = 2=, and it can be written as the set

�= = {B8A 9 : 8 = 0, 1, 9 = 0, . . . , = − 1}.

Along with +4, the groups Z= : = ≤ 5 make up all groups of order ≤ 5, so every group of order ≤ 5 is
abelian. Typically, if we want to prove something for finite groups by induction, the base case = ≤ 5 will
follow trivially from this fact, so it is worth keeping in mind.

Matrix groups will later play an important role. Denote by �! (+) the group of invertible linear transfor-
mations of a vector space + , under multiplication; this is the general linear group. The special linear group
(! (+) denotes the subgroup of matrices of determinant 1. When + is a 3-dimensional vector space over a
field �, we denote these by �! (3, �) and (! (3, �) respectively.

Exercise 4. If dim+ ≥ 2, �! (+) is not abelian.

1.3 Group homomorphisms

The most simple operations to construct a group (defined here in their most general forms) are the direct
sum and direct product. Given a collection of groups (�8)8∈� , define⊕

8∈�
�8 =

{
(68)8∈� : 68 ∈ �8 , and at most finitely many of the 68 are not equal to the identity

}
.

∏
8∈�

�8 =

{
(68)8∈� : 68 ∈ �8

}
.

A finite direct sum is always equal to the finite direct product, so we simply write

:⊕
8=1

�8 =

:∏
8=1

�8 = �1 × · · · × �: .

Conversely, can we “build up” any group from “smaller” groups? This is what motivates the definition of a
normal subgroup.

Definition 1.4. # is a normal subgroup of �, denoted # C �, if ∀6 ∈ �, 6#6−1 ⊂ # .

Equivalently, say G ∼ H if for some 6 ∈ �, G = 6H6−1. We say G and H are conjugate (in �), and the
equivalence classes of this relation are called conjugacy classes. Then # is a normal subgroup of � if and
only if # is a subgroup and # is a union of conjugacy classes.

Exercise 5. If � is a direct sum of groups � = � × �, then � C � and � C �.

Exercise 6. Every subgroup of an abelian group is normal.

Proposition 1.5. Any subgroup of index 2 is normal.
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Why are normal subgroups important?

Definition 1.6. A function i : � → � is a (group) homomorphism if i(6ℎ) = i(6)i(ℎ) for all 6, ℎ ∈ �.
If i is also a bijection, call it an isomorphism, and write � � �.

Given # ≤ �, we can define a natural operation on the set of cosets �/# by

(6#) (ℎ#) = (6ℎ)#.

This is well-defined if and only if # is a normal subgroup, in which case we call �/# a quotient group of �.
That is, given a homomorphism i : � → �, define its kernel

keri = {6 ∈ � : i(6) = 1}.

keri is a normal subgroup of �, and this is a one-to-one correspondence between normal subgroups of �
and kernels of homomorphisms of �.

(*) For = ∈ N>0, the map c= : Z→ Z=, c= (0) = 0 mod = is a homomorphism Z→ Z=. Its kernel is the
subgroup =Z.

(*) �= is the kernel of the sign homomorphism (= → {±1} � Z2, which sends a permutation to −1 if it
is the product of an odd number of transpositions, and 1 otherwise.

(*) (! (+) is the kernel of the determinant homomorphism det : �! (+) → �, the base field.

Exercise 7. If # C � and � ≤ �, then # ∩ � C �. If � C �, then # ∩ � C �.

Definition 1.7. We say � is an extension of  by �, if � has a normal subgroup isomorphic to  such that
the quotient group is isomorphic to �.

Unfortunately, it is not always true that � � # ⊕ �/# .
Exercise 8. For = ≥ 3, (= is not isomorphic to �= ⊕ Z2.3

Nevertheless, the three isomorphism theorems, though seemingly simple, prove to be powerful tools.

Theorem 1.8 (First isomorphism theorem). Let i : � → � be a group homomorphism.

��keri � Imi.

Given two subgroups �,  ≤ �, define their product denote by � as

� = {ℎ: : ℎ ∈ �, : ∈  }.

This is not always a subgroup! The subgroup generated by � and  will be denoted 〈�,  〉.
Exercise 9. � = {1, B} and  = {1, A2} are subgroups of �4, but � is not.

Exercise 10. For �,  ≤ �, � is a subgroup of � if and only if � =  �.

Exercise 11. If  C � and � ≤ �, then � is a subgroup of �. If � C � as well, then � C �.
3(= does not have a normal subgroup of order 2.
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Theorem 1.9 (Second isomorphism theorem). Let # C �, and � ≤ �. Then,

�#�# �
��� ∩ #.

Theorem 1.10 (Third isomorphism theorem). If � and  are normal subgroups of� such that � ≤  ≤ �,
then  /� is a normal subgroup of �/�, and

�/�� /� � �� .

Exercise 12. There is a one-to-one correspondence between subgroups of �/� and subgroups of � con-
taining �.

Exercise 13. Suppose � C �, and for some  ≤ �, � /� C �/�. Then � C �. That is, any normal
subgroup in �/� “lifts” to a normal subgroup in � containing �.

Vigyázz. Suppose � ≤ � and G, H ∈ �. Clearly, if G and H are conjugate in �, then they are conjugate in �,
but the converse is not true.

Exercise 14. If the cycle decomposition of c in (= contains ;8 cycles of length 8, for 1 ≤ 8 ≤ =, define the
cycle type of c as (;1, . . . , ;=). Show that two permutations are conjugate in (= if and only if they have the
same cycle type.4

A natural question to ask is: if " C # , and # C �, is " C �? Unfortunately, this is not true.

Exercise 15. 〈B, A2〉 C �4, and 〈B〉 C 〈B, A2〉, but 〈B〉 is not normal in �4.

However, we say a subgroup � is characteristic in �, denoted �char�, if � is fixed by every automor-
phism5 of �.

Proposition 1.11. If "char# and # C �, then " C �.

1.4 Important types of groups and subgroups

The theory of finite – in fact, finitely generated – abelian groups is well-studied.

Theorem 1.12 (Fundamental theorem of finitely generated abelian groups). If � is a finitely generated
abelian group, ∃ prime powers ?01

1 , . . . , ?
0:
:

(not necessarily all distinct) and = ≥ 0 such that,

� � Z= ⊕
:⊕
8=1

Z?08
8
.

Exercise 16. If the prime factorisation of = ∈ N is = = ?U1
1 . . . ?

U:
:
, then Z= � Z?U1

1
. . . Z

?
U:
:

.

For a prime ?, we say � is a ?-group if the order of every element of � is a power of ?. � may be
infinite: for example, the group of all ?: th roots of unity, as : runs over all natural numbers, is called the
quasicylic group �∞? .

Almost on the other end of the spectrum from abelian groups, we have simple groups, which contain no
nontrivial normal subgroups.

4Hint: if d = g−1fg, then d(g−1 (8)) = f(8) for all 8 = 1, . . . , =.
5An isomorphism � → �.
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Proposition 1.13. The only abelian finite simple groups are Z?, for ? prime.

For = ≥ 5, the alternating groups �= are simple, and they are the only normal subgroups of (=. �5 is
even the smallest nonabelian finite simple group.

In order to classify all finite simple groups, we want to define some subgroups that exist and are normal
in any group �, thus showing that in any nonabelian finite simple group these subgroups are trivial.

For two elements 6, ℎ ∈ �, define their commutator

[6, ℎ] = 6ℎ6−1ℎ−1,

and the commutator subgroup of �,

[�,�] = 〈[6, ℎ] : 6, ℎ ∈ �〉.

Vigyázz. [�,�], sometimes also denoted� ′, is the subgroup generated by all commutators of�. In general,
the set of all commutators need not be closed under the group operation.

Then,

(*) [�,�] C �.

(*) �/[�,�] is abelian.

(*) If �/# is abelian, then [�,�] ≤ # . Conversely, if [�,�] ≤ # , then # C � and �/# is abelian.

Define the center of �
/ (�) = {G ∈ � : 6G = G6,∀6 ∈ �}.

Equivalently, this is the set of all elements whose conjugacy class has exactly one element. / (�) C �. It is
important to know and easy to show that / (�) and [�,�] are characteristic in�. Further, each characterises
how far � is from being abelian; � is abelian if and only if / (�) = �, and if and only if [�,�] = 1.

Exercise 17. What is / ((=)? What is [(=, (=]?
Exercise 18. Give an example of a group � with a subgroup � ≤ � such that / (�) ≠ / (�) ∩ �. Which
inclusion is always true?

Exercise 19. If � = � × �, then / (�) = / (�) × / (�).
Given a set ( ⊂ �, define its centralizer and normalizer respectively

�� (() = {6 ∈ � : 6B = B6,∀B ∈ (},

#� (() = {6 ∈ � : 6( = (6}.

When ( = {G}, we abuse notation a little and write �� (G) and #� (G).

Proposition 1.14. �� (() and #� (() are always subgroups of �, and �� (() C #� ((). When ( is a
subgroup of�, ( ≤ #� (() and #� (() is the largest subgroup of� in which ( is normal. ( ≤ �� (() exactly
when ( is abelian.
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For 6 ∈ �, define i6 : � → � by
i6 (G) = 6−1G6.

This is an isomorphism from� → �, or an automorphism. Denote by �DC (�) the group of all automorphisms
of �, and by �==(�) = {i6 : 6 ∈ �} the subgroup of all inner automorphisms. Then,

��/ (�) � �==(�).

Proposition 1.15. � is abelian if and only if �==(�) is cyclic.6

Recall that a subgroup � ≤ � is called characteristic if it is invariant under �DC (�). A characteristic
subgroup is necessarily normal (invariant under �==(�)), but the converse need not hold.
Exercise 20. Give an example of a group � with a normal subgroup which is not characteristic.7

1.5 Group actions

We say � is a permutation group if � is isomorphic to a subgroup of some symmetric group. We say
a group � acts on a set Ω if there is a homomorphism i : � → (Ω, 6 → i6. Alternatively, each 6 ∈ �
defines a permutation of Ω so that

l1 = l,
(l6)ℎ = l(6ℎ), ∀6, ℎ ∈ �.

Vigyázz. We write a group action as a right group action, and will hopefully keep this consistent throughout
the note.

Definition 1.16. Let � act on Ω. Define

(1) the orbit of l ∈ Ω denoted by l� := {l6 : 6 ∈ �},

(2) the stabilizer of l, �l := {6 ∈ � : l6 = l}, sometimes denoted by (C01� (l),

(3) the kernel of the action, {6 ∈ � : l6 = l,∀l ∈ Ω}.

Example 1.17. �= acts on the set {1, . . . , =} by identifying it with the vertices of a regular =-gon. The orbit
of each element is the full set {1, . . . , =}. The stabilizer of an element is a subgroup of the form {1, BA 8}. The
kernel of the action is the identity subgroup.

Example 1.18. Given a subgroup � ≤ �, � acts on the cosets � : � by right multiplication. The orbit of
each coset �6 is the full coset space � : �. The stabilizer of the coset �6 is the conjugate subgroup 6−1�6.
The kernel of the action is called the core of �: this is the largest normal subgroup of � contained in �.

Example 1.19. Let � act on itself by conjugation, i.e. ℎ · i6 = 6−1ℎ6. The orbit of each element is its
conjugacy class. The stabilizer of an element ℎ is �� (ℎ). The kernel of the action is / (�).

6This is a misleading way to state the proposition. Of course, if � is abelian, then �==(�) is trivial. The crucial observation is
that if � is nonabelian, then �==(�) is not cyclic.

7Hint: the smallest such example satisfies |� | ≤ 5.
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Some properties that are easy to check:

(*) l61 = l62 ⇐⇒ �l61 = �l62.

(*) �l6 = 6−1�l6, i.e. any two stabilizers are conjugate in �.8

(*) ker(i) = ⋂
l �l .

The following result is easy to prove but surprisingly fundamental for many nontrivial results that will follow
later.

Lemma 1.20 (The orbit-stabilizer lemma). |l� | = |� : �l |.

Exercise 21. The size of each conjugacy class of � divides |� |.
Exercise 22. Let f ∈ �=. Let f(= and f�= denote its conjugacy classes in (= and �= respectively.

(a) If ��= (f) ( �(= (f), then f�= = f(= .

(b) If ��= (f) = �(= (f), then f(= splits into two conjugacy classes of equal size in �=, one of which is
f�= .

(c) List the conjugacy classes of (5 and �5.

(d) Show that �5 has no nontrivial normal subgroups.

An action is

(*) faithful if its kernel is trivial,

(*) transitive if it has only one orbit9,

(*) semi-regular if the stabilizer of every element is trivial, and

(*) regular if it is semi-regular and transitive.

Equivalently, it is regular if
∀U, V ∈ Ω, ∃!6 ∈ � : U6 = V.

Note that any semi-regular action is faithful.
Exercise 23. Suppose � acts transitively on Ω. Define a bijection from the coset space of �l to Ω;
5 : (� : �l) → Ω by 5 (�lG) = lG. Then the action of � on the cosets � : �l by right multiplication is
equivalent to the action of � on Ω, i.e. 5 (�l)G = 5 (�lG) for all G ∈ �.

If � acts transitively on Ω, then the orbit-stabilizer lemma implies that |Ω| divides |� |. If � acts
regularly on Ω, |� | = |Ω|, and for any fixed U ∈ Ω, we have a bijection 6 → U6. So any regular action of
� is essentially the right regular action (the action of � on itself by right multiplication). This gives us an
injective homomorphism � → Sym( |� |), so that

Theorem 1.21 (Cayley’s theorem). Every group is isomorphic to a permutation group.

From now on, instead of writing “� acts on Ω and the action is faithful”, we will write � ≤ (Ω.
8This is an important fact! Typically when we have a property for one stabilizer, it will be true for all stabilizers.
9∀U, V ∈ Ω, U6 = V for some 6 ∈ �.
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1.6 Sylow’s theorems

Sylow’s theorems provide a sort of converse to Lagrange’s theorem. Let � be a finite group, and let ? be
a prime such that the highest power of ? dividing |� | is ?: . Say � is a Sylow ?-subgroup of � if |� | = ?: .

Theorem 1.22 (Sylow’s theorems). Let |� | = ?:<, (<, ?) = 1.

(1) � has a Sylow ?-subgroup.

(2) Any two Sylow ?-subgroups of � are conjugate.

(3) The number of Sylow ?-subgroups of � divides < and is congruent to 1 mod ?.

An easy observation:

Corollary 1.23. Every finite abelian group is the direct sum of its Sylow ?-subgroups.

Exercise 24. What are the Sylow ?-subgroups of �=?

A useful observation is the following corollary, which we will use in later proofs.

Corollary 1.24. If� is a group of order ?@, where ?, @ are primes and ? > @, then� has a unique subgroup
of order ? and this is normal in �. As a result, � is solvable.10

2 Group structures

2.1 Free groups

Recall that we wrote the dihedral group as

�= = 〈A, B | A= = B2 = 1, AB = BA−1〉.

What if we just wrote
� = 〈A, B〉

and left the rest to fate? This is the idea of a free group.
Given a set - , we consider all finite words G1G2 . . . G= over - , with the operation of concatenation. Of

course, we would like some words such as GG−1 to be 1, where 1 denotes the empty word. Extending the −1

to words, if F1 = G1 . . . G: , define F−1
1 = G−1

:
. . . G−1

1 . Then define an equivalence relation F1 ∼ F2 if and
only if F1F

−1
2 = 1.

Definition 2.1. The free group generated by - is

� (-) = { finite words over -}�∼.

When |- | = = is finite, we may equivalently write �= to denote a free group on = elements. For example,

(*) � (∅) = {1}, the one-element group.

10We will define solvability later.
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(*) � ({G}) � Z.

(*) � (-) is nonabelian if |- | ≥ 2.

Exercise 25. Let - be a set and � a group. Any function 5 : - → � extends uniquely to a homomorphism
5 : � (-) → �.

Proposition 2.2.
� (-) � � (. ) ⇐⇒ |- | = |. |.

Proof. Clearly if |- | = |. |, then � (-) � � (. ). For the converse, if - is infinite, then |- | = |� (-) |, so the
claim follows. Suppose both - and . are finite, and � (-) � � (. ). Let Hom(�, �) denote the group of
homomorphisms from � → �, with the group operation i1i2(G) = i1(G)i2(G). Then Hom(� (-),Z2) �
Hom(� (. ),Z2), but any such homomorphism is uniquely determined by the image of the generators. So,���Hom(� (-),Z2)

��� = 2 |- | =
���Hom(� (. ),Z2)

��� = 2 |. | .

Let us return to our expression of �=. We now realise that this defined �= as a quotient group of �2. That
is, consider all words A=1 B=2 . . . B=2: that are the identity in �=. These define a normal subgroup # C �2, so
that �= � �2/# , where # is the normal subgroup generated by 〈A=, B2, ABAB−1〉.

In general,

Theorem 2.3. Every group is the homomorphic image of a free group.

The proof of this is exactly the analog of what we did for �=. If - is a generating set for �, the set of
words {F8 : F8 = 1 ∈ �} is a normal subgroup of � (-).

This characterises quotient groups of free groups. What about subgroups? Define the rank of a free group
as the minimum size of a generating set.

Theorem 2.4 (Nielsen-Schreier). Every subgroup � of a free group � (-) is free. If the rank of � is finite,
it is equal to |� : � |

(
|- | − 1

)
+ 1.

Before we prove this, note that when |- | = 1, � (-) = Z, and the theorem holds since any subgroup of
Z is cyclic. When |- | > 1 is finite, |� : � |

(
|- | − 1

)
+ 1 is typically larger than |- |, so a free group contains

many free groups of larger rank.

Exercise 26. The free group of rank 2 contains a free group of infinite rank.

Let � = � (-), where - is a self-inverse generating set (closed under inverses). Fix a subgroup � ≤ �.
Choose (right) coset representatives ) = {C8 : 8 ∈ �} for �/�, and call ) a transversal. We have a map
� → ) defined by sending G → Ḡ, its coset representative.

Lemma 2.5. If - is a self-inverse generating set of �, and � ≤ � with transversal ) , then

( =
{
CG(CG)−1 : C ∈ ), G ∈ -

}
is a self-inverse generating set of �.
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Proof. First note that
�CG = �CG

so
CG(CG)−1 ∈ �.

So the subgroup generated by ( is contained in �. For the reverse inclusion, we first need to check that ( is
closed under inverses. Since � (CG)G−1 = �C, C = (CG)G−1. So,(

CG(CG)−1
)−1

= CGG−1C−1 = CGG−1
(
CGG−1

)−1
∈ (.

Now to show that ( generates �; let ℎ ∈ �. Then ℎ = G1 . . . G= for some G8 ∈ �. Define

C8 = G1 . . . G8 , C0 = C= = 1.

Then,
ℎ = (C0G1C

−1
1 ) (C1G2C

−1
2 ) . . . (C=−1G=C

−1
= ).

Since C: = C:−1G: ,
C:−1G: C: = C:−1G: (C:−1G:)−1 ∈ (.

Of course, we may replace � in the above proof with an arbitrary group and the proof still holds. As a
corollary, when ) is finite,

Corollary 2.6. Finite index subgroups of a finitely generated group are finitely generated.

Proof of Nielsen-Schreier. We choose our transversal ) in a specific way. Fix a well-ordering � of - ,11 and
choose the lexicographically shortest word in each coset of �.

Step (1). ) is closed under prefixes, i.e. if F ∈ ) and F = DG for some G ∈ - , then D ∈ ) .

Suppose F = DG as above. If D ∉ ) , then for some C ∈ ) , C ≠ D, D = C. Either C is shorter than D, or they
have the same length, but C is lexicographically first.

�F = �DG = �CG.

Since F = DG ∈ ) , either DG has shorter length than CG, or DG is lexicographically first, a contradiction.

Step (2). Every word CG(CG)−1 is either reduced or the identity.

Suppose CG(CG)−1 is not reduced. Then either C is of the form DG−1, and D ∈ ) by step 1, so that

D = CG =⇒ CG(CG)−1 = DD−1 = 1.

Or, (CG)−1 begins with G−1, i.e. CG = DG, but D and C are both in ) , so D = C, and

CG(CG)−1 = DG(DG)−1 = 1.
11Axiom of choice.
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Step (3). For any product
(
C1G1(C1G1)−1

) (
C2G2(C2G2)−1

)
, either (a) one of them is the identity, or (b) they are

inverses of each other, or (c) G1 and G2 are not cancelled in the reduced form.

Suppose this product is not in reduced form. If C1G1 = C2 and G1 = G−1
2 , since the product lies in �,

C1 = C2G2, and (b) they are inverses of each other. If G2 is cancelled by (C1G1)−1C2, then C2G2 is a prefix of C1G1,
so C2G2 = C2G2 by step 1, and (a) C2G2(C2G2)−1 = 1. If neither of these things happen, then (c) G1 and G2 are not
cancelled in the reduced form.

Step (4). The number of generators required to write every element of � in unique reduced form |� (-) :
� |

(
|- | − 1

)
+ 1.

Clearly we have a total of
|) | · |- | = |� (-) : � | · |- |

generators of � of the form CG(CG)−1. How many of these generators do we need so that each word of �
has a unique reduced form? Equivalently, so that the identity has a unique reduced form? By step 3, if
1 =

(
C1G1(C1G1)−1

) (
C2G2(C2G2)−1

)
, where neither is equal to 1 or the inverse of the other, then G1 and G2 are

not cancelled. So we count the number of distinct words CG(CG)−1 that reduce to 1. Our argument from step
2 tells us this happens either if CG ∈ ) , so C ends with G−1, or CG ends with G. Disregarding inverses, for any
nonidentity C ∈ ) , there is exactly one G for which this happens, so this gives us |) | − 1 = |� (-) : � | − 1
such expressions. So the total number of generators needed is

|) | · |� | − (|) | − 1) = |� (-) : � |
(
|- | − 1

)
+ 1.

Let us look at one final property of free groups.

Definition 2.7. A group � is residually finite if⋂
#C�, |�:# |<∞

# = {1}.

Equivalently, for every nonidentity 6 ∈ �, there is a finite group � and a homomorphism i : � → � such
that i(6) ≠ 1.

Proposition 2.8. Free groups are residually finite.

Proof. Let - be a minimal generating set of � (-). Let F ∈ � (-) be a nonidentity word with reduced form
F = G

n=
= . . . G

n1
1 , where G8 ∈ - and n8 ∈ {±1}. Define a map q : - → (=+1 as follows. For each G8 , we want

qG8 to be a permutation that maps 8 → 8 + 1 if n8 = 1, and 8 + 1 → 8 if n8 = −1. Of course, some G8 may
be equal; for example if G1 = G3, then qG1 must map 1 → 2 and 3 → 4. However, by assuming that F is
in reduced form (so that G8 = G8+1 implies n8 = n8+1), we can choose a well-defined qG for each G ∈ - . By
induction, qF (1) = = + 1.
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2.2 Permutation groups

The orbit-stabilizer lemma (like Markov’s inequality in probability theory) has powerful applications for
a fairly simple statement.

Lemma 2.9 (Burnside’s lemma). Let � be finite and � ≤ (Ω. Let fix(6) denote the number of points of Ω
fixed by 6, and = the number of orbits of � on Ω. Then,

= =
1
|� |

∑
6∈�

fix(6).

The number of orbits is the average number of fixed points.

Proof. Clearly, ∑
6∈�

fix(6) =
���{(6, l) : l · 6 = l}

��� = ∑
l∈Ω
|�l |.

By the orbit-stabilizer lemma, ∑
l∈Ω
|�l | = |� |

∑
l∈Ω

1
|l · � | .

Each of the = orbits, represented by l1, . . . , l=, is counted with multiplicity its size. So,∑
6∈�

fix(6) = |� |
=∑
8=1

∑
l∈l8 ·�

1
|l8 · � |

= =|� |.

For G ∈ �, let G� denote the conjugacy class of G in �. As the action of � on itself by conjugation
induces a partition into orbits,

Theorem 2.10 (Class equation).
|� | = |/ (�) | +

∑
G∉/ (�)

|G� |

where the latter sum runs over all the conjugacy classes of � not contained in the center.

In a ?-group, each conjugacy class has size divisible by ?, so

Corollary 2.11. If � is a ?-group, then � has nontrivial center.

Exercise 27. The probability that two elements in a finite group commute is at most 5/8.

Lemma 2.12. The centralizer of a transitive permutation group is semi-regular.

Proof. Denote the centralizer of � ≤ (Ω by

� = {ℎ ∈ (Ω : 6ℎ = ℎ6,∀6 ∈ �}.

Let �l denote the stabilizer of l in �. For ℎ ∈ �l , and any U ∈ Ω, there is some 6 ∈ � such that l6 = U.
Then,

Uℎ = l6ℎ = lℎ6 = l6 = U.

That is, ℎ ∈ �U for all U ∈ Ω. The action is faithful, so ℎ = 1 and �l is trivial.
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Exercise 28. The centralizer of a semi-regular permutation group is transitive.

Theorem 2.13 (Bercov-Moser). If � ≤ (= is abelian, then |� | ≤ 3=/3.

Proof. We proceed by induction on =, the base case = ≤ 2 being trivial. First, suppose � is transitive. By the
lemma, its centralizer� ≤ (= is semi-regular, and� ≤ � as it is abelian, so� is regular and |� | = = ≤ 3=/3.
If � is not transitive, partition [=] into orbits Ω1, . . . ,Ω: under the action of �. The restriction of � to each
orbit yields a transitive action. These correspond to homomorphisms i8 : � → (Ω8 , such that

⋂
8 ker(i8) = 1.

So, by the induction hypothesis

|� | ≤
:∏
8=1

����/ker(i8)
��� ≤ :∏

8=1
3=8/3 = 3=/3.

Exercise 29. For which abelian permutation groups � ≤ (= does |�| = 3=/3 hold?

Exercise 30. Determine the order of the centralizer of an arbitrary permutation.

Theorem 2.14. For = ≠ 6, every automorphism of (= is inner.

Proof. Since two permutations are conjugate if and only if they have the same cycle type, and the trans-
positions generate (=, it suffices to show that any automorphism f maps transpositions to transpositions.
We know that f is order-preserving, so for any transposition 6 ∈ �, f(6) is the product of : commuting
transpositions for some : . Suppose : ≥ 2. Further, f is an automorphism from �� (6) → �� (f(6)), so we
compare the orders of the centralizers.

|�� (f(6)) | = 2: :!(= − 2:)! = 2(= − 2)! = |�� (6) |
2:−1:! = (= − 2: + 1) . . . (= − 3) (= − 2)

If = > 2: , each side of the equation has 2: − 2 factors, and each factor on the left is smaller than a
corresponding factor on the right, so equality is not possible. If = = 2: , the equation becomes

2:−1:! = (2: − 2)!

It is easy to check this does not hold for : = 1, 2, does hold for : = 3, and for : > 3,

2:−1:! = 4 · 2:−3:! < (2: − 2)!

This shows that for = ≠ 6, f maps transpositions to transpositions, so it preserves cycle type and must be an
inner automorphism.

Exercise 31. What is an automorphism of (6 that is not inner?
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2.3 Groups of linear transformations

The alternating groups form an infinite family of finite simple groups. In this section we will construct
another, the projective special linear groups.

Let + be a vector space, �! (+) the group of invertible linear maps, (! (+) the subgroup of maps with
determinant 1. When + is 3-dimensional, we write �! (+) = �! (3, �) and (! (+) = (! (3, �), the matrix
groups. Note that det : �! (3, �) → �∗ is a homomorphism, so ker(det) = (! (3, �) C �! (3, �).

Consider the action of �! (3, �) on the 1-dimensional subspaces of + (equivalently, on the projective
space of dimension 3 − 1, but it is not necessary to know what this means.) The kernel of this action is
/ (�! (3, �)).
Exercise 32. The center of �! (3, �) is the group of scalar matrices, i.e. {_ · � : _ ∈ �×}, where � denotes
the identity matrix.

Definition 2.15. The projective general linear group is

%�! (+) = �! (+)�/ (�! (+)).

Restricting the action to (! (+), the projective special linear group is

%(! (+) = (! (+)�/ ((! (+)).

We are only interested in the case when + is finite-dimensional and � is some finite field F@.

|�! (3, @) | = (@3 − 1) (@3 − @) . . . (@3 − @3−1)

|(! (3, @) | = |�! (3, @) |
@ − 1

|%�! (3, @) | = |�! (3, @) |
@ − 1

|%(! (3, @) | = |(! (3, @) |
gcd(3, @ − 1)

The last equality follows from the fact that / ((! (3, @)) consists of the matrices _ · � such that _3 = 1.
As promised,

Theorem 2.16. %(! (3, �) is simple, except when 3 = 2 and |� | = 2 or 3.

Exercise 33. %(! (2, 2) � (3 and %(! (2, 3) � �4.

To prove the theorem, we will show that any proper normal subgroup of (! (+) is contained in the center,
so that the quotient %(! (+) contains no nontrivial normal subgroups. We will need to construct a generating
set for (! (+).

Definition 2.17. If W : + → + is a linear map such that rank(W) = 1 and Im(W) ⊂ ker(W), then � +W ∈ (! (+)
is a transvection.

The transvections in (! (+) play a similar role to the transpositions in (=. We will need many lemmas,
so let us state them all first.
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Lemma 2.18. If 3 ≥ 3, all transvections are conjugate in (! (3, �).

Lemma 2.19. If 3 = 2, the subgroups

)* = {� + W : Im(W) = ker(W) = *} ∪ {�}

for each one-dimensional subspace* ≤ + are conjugate in (! (+).

Lemma 2.20. The transvections generate (! (+).

Lemma 2.21. The commutator subgroup (! (+) ′ = (! (+), except when 3 = 2 and |� | = 2 or 3.

Lemma 2.22. (! (+) acts 2-transitively on the one-dimensional subspaces of + .12

Lemma 2.23. If� acts 2-transitively onΩ, any normal subgroup acts either trivially or transitively. Further,
any stabilizer is a maximal subgroup.

Lemma 2.24. The stabilizer � ≤ (! (+) of a one-dimensional subspace contains an abelian normal
subgroup consisting of � and some transvections.

Let us see how this implies that %(! (+) is simple.

Proof of Theorem 2.16. We will show that any proper normal subgroup of (! (+) is contained in / ((! (+)).
Suppose # C (! (+). By Lemma 2.23, # acts either trivially or transitively on the one-dimensional subspaces
of + . If # acts trivially, then every vector of + is an eigenvector for # , so # ≤ / ((! ((+)). Suppose # acts
transitively on the one-dimensional subspaces. Let � be a stabilizer, so � is a maximal subgroup of (! (+)
by Lemma 2.23. Then � ≤ #� ≤ (! (+). However, # acts transitively, so we must have #� = (! (+).

Let  C � be the abelian normal subgroup given by Lemma 2.24. Then # C #� = (! (+).
Since # contains some transvections, by Lemma 2.18 # contains all transvections, and by Lemma 2.20
# = (! (+). So,

(! (+)�# �  � ∩ #
 is abelian, so (! (+) ′ ≤ # . This is where we use that we cannot have 3 = 2 and |� | = 2 or 3:
(! (+) ′ = (! (+) by Lemma 2.21, and this implies that # = (! (+).

After all this, we finally obtain that %(! (+) contains no nontrivial normal subgroups.

Time to prove our many lemmas.

Lemma 2.18. If 3 ≥ 3, all transvections are conjugate in (! (3, �).

Proof. For any transvection � + W, choose a basis D1, . . . , D3 of + so that Im(W) = 〈D1〉, ker(W) =
〈D1, . . . , D3−1〉, and W(D3) = D1. In particular, this shows that any two transvections have the same ma-
trix by a change of basis, so they are conjugate in �! (+). If 3 ≥ 3, then D2 is distinct from both D1 and D3 ,
so multiplying it by a suitable scalar U does not affect the matrix of � + W, but changes the determinant of the
transition matrix to 1. So any two transvections are conjugate in (! (+).

12This will be defined in the proof.
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Lemma 2.19. If 3 = 2, the subgroups

)* = {� + W : Im(W) = ker(W) = *} ∪ {�}

for each one-dimensional subspace* ≤ + are conjugate in (! (+).

Proof. We want to show that for distinct one-dimensional subspaces * and * ′, the subgroups )* and )* ′
differ by a change of basis. By the same argument above, there is a basis of + so that

)* =

{ [
1 G

0 1

]
: G ∈ �

}
Again, it follows that any two such subgroups are conjugate in (! (2, �).

Lemma 2.20. The transvections generate (! (+).

Proof. Weprove by induction for 0 ≤ : ≤ 3, that for any q ∈ (! (+) and D1, . . . , D: ∈ + linearly independent,
there is a product of transvections k: such that k: (D1) = q(D8) for 8 = 1, . . . , : . For : = 0, choose k0 = �

and the statement clearly holds.
Suppose the statement holds for some : . Fix q ∈ (! (+), linearly independent vectors D1, . . . , D: , D:+1,

and k: the corresponding product of transvections for D1, . . . , D: . Define

q′ = k−1
: q.

Then,
q′(D8) = D8 , 8 = 1, . . . , :

Let q′(D:+1) = F, i.e. q(D:+1) = k: (F). If F = D:+1, then we are done, so let us assume they are different.

Case (1). D1, . . . , D:+1, and F are linearly independent.

Choose a transvection � + ` as follows.13

〈D1, . . . , D:〉 ≤ ker(`),
`(D:+1) = `(F) = F − D:+1.

Then (� + `) (D8) = D8 for 8 = 1, . . . , : , and (� + `)D:+1 = F. So k: (� + `) is the required product of
transvections.

Step (2). D1, . . . , D:+1, F are linearly dependent and : + 1 < 3.

Extend D1, . . . , D:+1 to a basis E, E:+3, . . . , E3 . Define a transvection q1 = � + W1 such that W1 is zero
on all basis vectors except for W1(D:+1) = W1(E) = E − D:+1. Then, q1(D:+1) = E. Since q′ is invertible,
D1, . . . , D: , F are linearly independent, so we define q2 analogously to q1, but with q2(F) = E. q1 and q2
are transvections, and k:q−1

2 q1 is the desired product of transvections.

Step (3). D1, . . . , D:+1, F are linearly dependent and : + 1 = 3.

13We can do this by extending the : + 2 vectors to a basis of + .
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In this case, q′(D:+1) = D + _D:+1, for some D ∈ 〈D1, . . . , D:〉. The matrix of q′ in this basis is
1 0 . . . ∗
0 1 . . . ∗

...

0 0 . . . _


Since det(q′) = 1, _ = 1, so q′ is itself a transvection and q = q′k: .

Exercise 34. If dim+ = 3, what is the maximum number of transvections needed to express an element of
(! (+)?

Lemma 2.21. The commutator subgroup (! (+) ′ = (! (+), except when 3 = 2 and |� | = 2 or 3.

Proof. The commutator subgroup is normal, so it suffices to show that some transvection is a commutator.
If 3 ≥ 3,

[� + �12, � + �23] = (� + �12)−1(� + �23)−1(� + �12) (� + �23) = � + �13.

If 3 = 2, and |� | ≠ 2 or 3, it suffices to show that some )* contains a commutator. For arbitrary 0, 2 ∈ �×,
take the commutator [ [

0 0
0 0−1

]
,

[
1 2

0 1

] ]
=

[
1 2(1 − 0−2)
0 1

]
Since |� | ≠ 2 or 3, we can find some nonzero 0 forwhich 0−2 ≠ 1, so the resultingmatrix is a transvection.

Lemma 2.22. (! (+) acts 2-transitively on the one-dimensional subspaces of + .14

Proof. In general, we say a group � acts 2-transitively on Ω, if for any l1, l2 ∈ Ω distinct, and U1, U2 ∈ Ω
distinct, there is some 6 ∈ � such thatl1 ·6 = U1 andl2 ·6 = U2. So let 〈01〉, 〈02〉 be distinct one-dimensional
subspaces, and 〈11〉, 〈12〉 be distinct one-dimensional subspaces of + . For any numbers U1, U2 ∈ �, we can
find a q ∈ �! (+) such that q(01) = U111 and q(02) = U212. For an appropiate choice of U1 and U2,
det(q) = 1, so q ∈ (! (+).

Lemma 2.23. If� acts 2-transitively onΩ, any normal subgroup acts either trivially or transitively. Further,
any stabilizer is a maximal subgroup.

Proof. Suppose # C � does not act trivially. Choose l ∈ Ω and = ∈ # such that l · = ≠ l. Then, for any
distinct U, V ∈ Ω, there exists 6 such that (l · =)6 = U and l6 = V. Then,

U · 6−1=−16 = (l=) · =−16−1 = V

so # acts transitively.

Lemma 2.24. The stabilizer � ≤ (! (+) of a one-dimensional subspace contains an abelian normal
subgroup consisting of � and some transvections.

14This will be defined in the proof.
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Proof. Let 〈D1〉 ≤ + be stabilized by �. For a fixed basis of + , each matrix of � has the form[
_ ∗
0 �

]
,

where _ is a scalar and � is a (3 − 1) × (3 − 1) matrix. The map � → (! (3, �) sending each matrix to the
submatrix � is a homomorphism. Its kernel is a set of matrices of the form[

1 ∗
0 �3−1

]
.

These are transvections which commute with each other, giving the desired subgroup of �.

2.4 Group extensions

Given # and �/# , can we recover the structure of the group �? First, let us consider how to obtain a
group � from two groups # and � so that # C � and �/# � �. We can take the direct sum/product, but a
more complicated construction is the semidirect product.

Definition 2.25. We say � is an operator group on a group # if there is a homomorphism i : � → �DC (#).
We denote the action of ℎ ∈ � on = ∈ # by =ℎ.

Define the semidirect product of # by � as # o � = {(=, ℎ) : = ∈ #, ℎ ∈ �} with the operation(
=1, ℎ1

) (
=2, ℎ2

)
=

(
=1=

ℎ−1
1

2 , ℎ1ℎ2
)

The task of verifying that this is a group is left to the reader. Of course, the more skeptical reader will
(rightly) ask, “What is the point of this?”. Let us look at where a semidirect product occurs in nature.

Let + be a vector space, and �! (+) the group of invertible linear transformations of + . When + = R=,
there are some natural mapsR= → R= that we would like to call “invertible transformations”, but they are not
necessarily linear. For example, translation, or rotation about a point different from the origin. This motivates
the definition of an affine transformation.

An affine subspace � is a set of the form 0 +*, where 0 ∈ + and * is a subspace of + . The dimension
of � is defined as the dimension of *. An affine transformation is then a map + → + that preserves the
dimension of any affine subspace. Of course, every element of �! (+) is an affine transformation, but so are
the translations, and these are not linear maps. Let �� (+) be the group of translations of+ , so �� (+) � + .

Definition 2.26. The affine general linear group of + , denoted ��! (+) is given by �� (+) o �! (+).

Each element (E, ") ∈ ��! (+) acts on + by

(E, ") ◦ G = E + "G.

When + = R=, these are exactly the isometries.
But this is not the first example of a semidirect product we have seen in this note. Let us return once

again to our dihedral group �=. Define an action of Z2 on Z=, where the nonidentity element of Z2 maps
each element of Z= to its inverse. This is an automorphism because Z= is abelian, and �= � Z= o Z2.
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Exercise 35. Give an example of a semidirect product � o � such that / (�) and / (�) are nontrivial, but
/ (� o �) is trivial.15

A fundamental theorem in group theory is the following.

Theorem 2.27 (Schur-Zassenhaus). Let � be a finite group and # C �. If |# | and |� : # | are coprime,
then � is a semidirect product of # and �/# .

Let us reformulate this as

Theorem (Schur-Zassenhaus). Let � be a finite group with |� | = 01, where (0, 1) = 1. If � has a normal
subgroup of order 0, then it has a subgroup of order 1.

Proof that the two formulations are equivalent. Clearly the first statement of Schur-Zassenhaus implies the
second. For the converse, let # be a normal subgroup of order 0, and � a subgroup of order 1. Then
# ∩ � = {1} and � = #�, so � = # o �, where � acts on # by conjugation.16

In order to prove the Schur-Zassenhaus theorem in its second formulation, we will reduce to the case
when the normal subgroup # is abelian. We will need the following two results for the proof. Recall the
following result.

Proposition 1.11. If "char# and # C �, then " C �.

This next result is a fundamental result in group theory, which we will use often.

Proposition 2.28. (Frattini’s argument) Let � be a finite group, � C �, and % a Sylow ?-subgroup of �.
Then � = �#� (%), and |� : � | divides |#� (%) |.

Proof. Since � is normal in �, �#� (%) = #� (%)� is a well-defined subgroup of �. For any 6 ∈ �,
6−1%6 ≤ � is a Sylow ?-subgroup in �. For some G ∈ �, G−1%G = 6−1%6, so 6G−1 ∈ #� (%) and
6 ∈ #� (%)�.

Reduction to the case # abelian. We proceed by induction, the case |� | ≤ 5 being clear as always. Let �
be the least group for which the theorem fails; there is a normal subgroup # of order 0, but no subgroup of
order 1.

Step (1). # is a minimal normal subgroup of �.

If not, let " ≤ # be a proper nontrivial normal subgroup of �. Applying the induction hypothesis to
#/" C �/" , �/" has a subgroup  /" of order 1, but this corresponds to a subgroup  in � of order 1.

Step (2). # is a vector space over F?, i.e. it is abelian and every element has order ?.

Let % be a Sylow ?-subgroup of # . By Frattini’s argument, � = ##� (%), so

�/# � #� (%)/(# ∩ #� (%)).

15Hint: start with the smallest groups.
16It needs to be shown that under these hypotheses, #� � # o �, but this is definition-chasing.
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# ∩ #� (%) is normal in #� (%), so if #� (%) is a proper subgroup of �, then #� (%) has a subgroup of
order 1, which is not possible. So % C �, and by minimality of # , # = %. Of course, / (%) is a characteristic
subgroup of %, hence normal in �, so / (%) = %. Finally, we want to show that every element of # has order
?; this amounts to showing that the subgroup # ? = {G? : G ∈ #} is trivial. # ? is characteristic in # , so it is
normal in �, and therefore it is trivial.

Step (3). A contradiction at last.

There exist more illuminating proofs, but for now let us see a self-contained (albeit tedious) proof. We
follow the presentation of [7].

Let & = �/# . & has a natural action on # where 0#6 = 06 = 6−106. Choose a representative CG for
each coset G# . Our goal is to modify this to a set of coset representatives BG such that BGBH = BGH , thereby
inducing an injective homomorphism & → # . For now though, all we can say is that since CGCH# = CGH# ,
there is some 2(G, H) ∈ # such that

CGCH = CGH2(G, H).

A little manipulation yields
2(GH, I) · 2(G, H)I = 2(G, HI) · 2(H, I).

Now define
3 (H) =

∏
G∈&

2(G, H).

Since # is abelian

3 (I) · 3 (H)I = 3 (HI) · 2(H, I)1, or equivalently
3 (HI) = 3 (H)I3 (I)2(H, I)−1

Since (0, 1) = 1, there is some 4(H) ∈ # such that 4(H)1 = 3 (H)−1, so we rewrite our last equation as

4(HI) = 4(H)I4(I)2(H, I).

We are almost done! We only need one more piece of notation: define

BG = CG4(G)

so that after some fun computations,

BHBI = CHCI4(H)I4(I) = CHI2(H, I)4(H)I4(I) = CHI4(HI) = BHI

and this is the transversal we wanted. The map B : & → � that sends G → BG is a homomorphism. If BG = 1,
then CG ∈ # and G = 1&, so the homomorphism is injective, and this gives us a subgroup of order 1 in�.

Remark. It is possible to prove more: that any two subgroups of order 1 are conjugate, but we do not need
this.
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2.5 ?-groups

Recall that a ?-group is a group � in which every element has order a power of ?. If � is finite, an
application of Cauchy’s theorem – or Sylow’s theorem, if you want to be fancy – shows that |� | = ?: for
some : ∈ N.

Exercise 36. Groups of order ? and ?2 are abelian. There is a nonabelian group of order ?3.

It is easy to check that

Proposition 2.29. The property of being a ?-group is preserved by subgroups, quotients, extensions, and
direct sums.

Note that an infinite direct product of ?-groups may contain elements of infinite order. Infinite ?-groups
do exist:

1. The quasicyclic group �∞? =
⋃
:≥0�?: , or the group of all ?-power roots of unity.

2. The group of upper unipotent matrices*= – upper triangular matrices with 1’s on the diagonal – over
a field of characteristic ?. Every element of this group can be written as � + �, where � is nilpotent,
so (� + �) ?: = � ?: + �?: = � for : large enough.

3. The Tarski monster groups are infinite ?-groups such that every element has order ?, and the only
nontrivial subgroups are cyclic.

Recall that an easy application of the class equation told us that

Corollary 2.11. If � is a ?-group, then � has nontrivial center.

The same counting argument tells us that

Corollary 2.30. Any normal subgroup of a finite ?-group intersects the center nontrivially.

This is sajnos not true for infinite ?-groups.

Theorem 2.31. There is an infinite ?-group with trivial center.

Proof. We say a function 5 : �→ � has finite support if the set {0 ∈ � : 5 (0) ≠ 1} is finite. Define

F =
{
5 : �∞? → �∞? : 5 has finite support

}
.17

This is a group under pointwise multiplication. Let �∞? act on F so that for 5 ∈ F and 0 ∈ �∞? , 5 0 (G) =
5 (G0−1). Our infinite ?-group will be � = F o�∞? ; we claim first that if / (�) is nontrivial, then / (�) ∩ F
or / (�) ∩ �∞? is nontrivial. Suppose ( 5 , 2) ∈ / (�). If 2 = 1, then we are done. Otherwise, since / (�) is
normal in � and 5 has finite support, conjugating by finitely many elements of the form (6, 1) we obtain an
element of / (�) that is in �∞? .18

17We do not assume that 5 is a homomorphism!
18If 5 (0) ≠ 1, choose 6 so that 6(02) = 5 (0)−1 and 6(G) = 1 otherwise. Then, (6−1, 1) ( 5 , 2) (6, 1) = (6−1 5 62

−1
, 2), and the

support of 6−1 5 62
−1 is a proper subset of that of 5 .



2. Group structures 24

Now, suppose ( 5 , 1) ∈ / (�) ∩ F . Then for all 2 ∈ �∞? ,

(1, 2−1) ( 5 , 1) (1, 2) = (1, 2−1) ( 5 , 2) = ( 5 2 , 1) = ( 5 , 1)

or,
5 (G2) = 5 (G), ∀G, 2 ∈ �∞? .

However, if 5 (G) ≠ 1 for some G ∈ �∞? , then 5 (G2) ≠ 1 for all 2 ∈ �∞? , but 5 has finite support. So / (�) ∩F
is trivial.

Next, let (1, 2) ∈ / (�) ∩ �∞? . Then for all 5 ∈ F ,

( 5 −1, 1) (1, 2) ( 5 , 1) = ( 5 −1, 1) ( 5 2 , 2) = ( 5 −1 5 2 , 2) = (1, 2).

In other words,
5 −1 5 (G2−1) = G, ∀ 5 ∈ F ,∀G ∈ �∞? .

Clearly this is only possible if 2 = 1, so / (�) ∩ �∞? is also trivial and this concludes the proof.

Another construction involves the infinite group * of upper unipotent matrices over F? such that all but
finitely many nondiagonal entries are 0; these are “infinite” upper triangular matrices whose diagonal entries
are equal to 1. If �∞ denotes the (countably) infinite identity matrix, and $ the zero matrix, * consists of
matrices of the form [

" $

$ �∞

]
where" is an upper unipotent =×=matrix for some =. For any nonidentity element of*, i.e. any nonidentity
= × = matrix " , consider the equations for 2= × 2= matrices[

" $

$ �=

] [
�= �=

$ �=

]
=

[
" "

$ �=

]
,

but [
�= �=

$ �=

] [
" $

$ �=

]
=

[
" �=

$ �=

]
.

In other words, for any nonidentity matrix in *, we can find a matrix in * with which it does not commute,
namely 

" $ $

$ �= $

$ $ �∞



�= �= $

$ �= $

$ $ �∞

 ≠

�= �= $

$ �= $

$ $ �∞



" $ $

$ �= $

$ $ �∞

 .
So* has trivial center.19

19There is a less constructive proof of this using projective limits: namely that* embeds in the projective limit of*=, the upper
=× = unipotent matrices. On one hand, the projection* → *= by restricting to the upper =× = submatrix maps the center of* into
the center of*=. On the other hand, the projections*= → *=−1 map the center of*= trivially, so the center of* must be trivial as
well.
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The Frattini subgroup

Let us return to finite ?-groups. How far are they from being abelian?

Definition 2.32. � is an elementary abelian ?-group if � is abelian and the order of every nonidentity
element is ?. Equivalently, � is a vector space over F?.

Proposition 2.33. If � is a finite ?-group, and � ≤ � a proper subgroup, then � is a proper subgroup of
#� (�).

Proof. We proceed by induction, the case |� | = ? being trivial. Suppose |� | = ?=, = ≥ 2, and � is a proper
subgroup of �.

Case (1). / (�) ≤ �.

/ (�) is nontrivial, so �// (�) is a proper subgroup of �// (�). By the induction hypothesis, there is
some  ≤ � such that �// (�) C  // (�) and the containment is proper, so � C  and the containment
is proper in �.

Case (2). / (�) is not contained in �.

Since / (�) ≤ #� (�), � must be properly contained in #� (�).

Corollary 2.34. If " is a maximal subgroup in a finite ?-group �, then " C � and |� : " | = ?.

Definition 2.35. For any group �, the Frattini subgroup is

Φ(�) =
⋂

" ≤� maxl.
",

the intersection of all maximal proper subgroups of �.

Proposition 2.36. For any group �,

Φ(�) = {6 ∈ � : 〈(, 6〉 = � =⇒ 〈(〉 = �},

i.e. the Frattini subgroup is the set of elements that can be removed from any generating set.

Proof. We will show that the complement of the statement holds, i.e.

� \Φ(�) = {6 ∈ � : for some (, 〈(, 6〉 = � but 〈(〉 ≠ �}.

Suppose G ∈ � \ Φ(�), so that for some maximal subgroup " , G ∉ " . Then 〈", G〉 = �, but 〈"〉 ≠ �,
proving the containment ⊆. Conversely, suppose for some (, 〈(, G〉 = � but 〈(〉 ≠ �. By Zorn’s lemma, the
set {

� ≤ � : 〈(〉 ≤ �, G ∉ �
}

has a maximal element �, and this is a maximal proper subgroup of � not containing G; G ∈ � \Φ(�).

... and we return to ?-groups.
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Proposition 2.37. If � is a finite ?-group, Φ(�) is the smallest normal subgroup such that �/Φ(�) is an
elementary abelian ?-group.

Proof. If " ≤ � is a maximal subgroup, then �/" is cyclic of order ?, so [�,�] ≤ " . Then [�,�] ≤
Φ(�), so �/Φ(�) is abelian. Further, for any G ∈ �, and any maximal subgroup " in �, G? ∈ " , so
G? ∈ Φ(�) and �/Φ(�) is elementary abelian.

Conversely, suppose �/# is elementary abelian. For any G ∉ # , there is a maximal subspace of �/#
not containing G# . This corresponds to a maximal subgroup "/# in �/# such that G ∉ " , and as a
consequence, " is maximal in �. So G ∉ Φ(�). This implies that Φ(�) ≤ # .

Can we find a basis for �/Φ(�) as a vector space over F??

Theorem 2.38 (Burnside’s basis theorem). Let � be a finite ?-group. {61, . . . , 63} is a minimal generating
set for � if and only if {6̄1, . . . , 6̄3} is a minimal generating set for �/Φ(�).

Proof.

〈61, . . . , 63〉 = � ⇐⇒ 〈61, . . . , 63 ,Φ(�)〉 = � ⇐⇒ 〈61Φ(�), . . . , 63Φ(�)〉 = �/Φ(�).

Clearly one of the generating sets is minimal if and only if the other is.

3 Nilpotent and solvable groups

3.1 Nilpotent groups

Recall that (3 is the smallest nonabelian group, so any group that is a proper subgroup or quotient group
of (3 is abelian. More generally, we want to classify groups that can be built up as extensions of abelian
groups. The most natural approach is to consider groups that can be built up from their centers.

Definition 3.1. The upper central series of � is

1 = /0(�) ≤ /1(�) ≤ . . .

where /=+1(�) is defined by20
/=+1�/= = /

(��/=) .
Definition 3.2. � is nilpotent if its upper central series terminates in finitely many steps, i.e. /= = � for
some = ∈ N. The least such = is called the nilpotency class of �.

Exercise 37. /= is characteristic in � ∀= ∈ N.

It is easy to see that � has nilpotency class 1 if and only if � is abelian. However, there exist nonabelian
nilpotent groups. For example, since any ?-group has nontrivial center,

Proposition 3.3. Any finite ?-group is nilpotent.

20Sometimes it will be easier on the eyes to write /= instead of /= (�), when � is clear from context.
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And we know that there exist nonabelian ?-groups.

Lemma 3.4. If �// (�) is nilpotent, so is �.

Proof. Let � = �// (�).
/=+1(�)//= (�) = / (�//= (�)).

But �//= (�) � �//= (�), so by induction /= (�) = /= (�)// (�) and the upper central series of �
terminates.

Of course, it is not always easy to compute the upper central series, so let us look at several equivalent
characterisations:

Theorem 3.5. Let � be a finite group. The following are equivalent.

1. � is nilpotent.

2. � has a central series, 1 = �0 C �1 C · · · C �= = �, such that �8+1/�8 ≤ /
(
�/�8

)
for all 8.

3. Every proper subgroup of � is a proper subgroup of its normalizer.

4. Every Sylow subgroup is normal in �.

5. � is isomorphic to the direct sum of its Sylow subgroups.

6. Every maximal subgroup of � is normal.

I am sure there are several other equivalent conditions one can concoct, but these are the most useful.

Remark. The second condition says that it suffices to find a good sequence of normal subgroups, not
necessarily the center. The last 4 conditions generalise nice properties of abelian groups, and show that the
largest class of groups satisfying these is that of the nilpotent groups.

In order to prove the equivalence of the last property, we will need Frattini’s argument.

Proposition 2.28. (Frattini’s argument) Let � be a finite group, � C �, and % a Sylow ?-subgroup of �.
Then � = �#� (%), and |� : � | divides |#� (%) |.

Proof of Theorem 3.5. 1 =⇒ 2 is clear.
2 =⇒ 3 : We proceed by induction on |� |, the case |� | ≤ 5 being trivial. By 2, it follows that

/ (�) ≠ 1. If � does not contain / (�), then / (�) ≤ #� (�), so � is properly contained in #� (�).
Suppose / (�) ≤ �. Applying the induction hypothesis to �// (�), �// (�) is properly contained in its
normalizer #// (�) ≤ �// (�). However, # = #� (�), so � is properly contained in it in �.

3 =⇒ 4 : If � is a ?-group for some prime ? this is clear. Otherwise, let % be a (proper) Sylow
?-subgroup of �, and # = #� (%). % is normal in # , so it is the unique Sylow ?-subgroup of # , so it is
characteristic in # . This implies that % C #� (#). If # is a proper subgroup of �, then #� (#) is strictly
bigger than # , which is not possible. so # = �, i.e. % C �.

4 =⇒ 5 : We show by induction that if %1, . . . , %C are distinct (normal) Sylow ?-subgroups of �, then
%1 . . . %C � %1 × · · · × %C . The base case C = 1 is an exercise for the reader. For the general case,

%C ∩ (%1 . . . %C−1) = 1 =⇒ %1 . . . %C−1%C � %1 × · · · × %C .
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5 =⇒ 1 : Again, we proceed by induction, and take the base case |� | ≤ 5 for granted. Since
� � %1 × · · · × %A , / (�) � / (%1) × / (%A ). By induction, �// (�) is nilpotent, so � is nilpotent by the
earlier lemma.

3 =⇒ 6 : If " is a maximal proper subgroup of �, and " is properly contained in its normalizer, then
" is normal in �.

6 =⇒ 5 : Suppose % is a Sylow ?-subgroup of � that is not normal, and " a maximal proper subgroup
of � containing #� (%). " C �, so by Frattini’s argument, � = "#� (%), contradicting our choice of " .

Now that we have several definitions for nilpotent groups, let us study some properties.

Proposition 3.6. The class of nilpotent groups is closed under subgroups, quotient groups, and finite direct
products.

The converse is not true: if # and �/# are nilpotent, � need not be nilpotent.

Exercise 38. (3 is not nilpotent.

Corollary 3.7. If � is a maximal normal abelian subgroup of a nilpotent group �, then � = �� (�).

Proposition 3.8. If � is nilpotent and 1 ≠ # C �, then # ∩ / (�) is nontrivial.

Proof. There is some 8 for which # ∩ / 8 is trivial, and # ∩ / 8+1 is nontrivial. It is easy to check that for the
upper central series,

[�, / 8+1] ≤ / 8 .

Since # is normal in �, we also have [�, #] ≤ # . In other words,

[�, # ∩ / 8+1] ≤ [�, #] ∩ [�, / 8+1] ≤ # ∩ / 8 = {1}.

This shows that # ∩ / 8+1(�) ≤ / (�), and by hypothesis this is a nontrivial subgroup of # contained in
/ (�); # ∩ / (�) ≠ {1} and 8 = 1.

Corollary 3.9. A minimal normal subgroup of a nilpotent group is contained in the center.

3.2 Solvable groups

Our greatest disappointment from the previous subsection is that the extension of a nilpotent group by
a nilpotent group need not be nilpotent. So let us define a larger class of groups – solvable groups – that is
closed under such extensions.

Definition 3.10. The derived series of � is

� = � (0) ≥ � (1) ≥ . . .

where
� (=+1) = [� (=) , � (=) ] .

Just as we defined a nilpotent group,
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Definition 3.11. � is solvable if its derived series terminates in finitely many steps, i.e. � (=) = {1} for some
= ∈ N.

As the commutator subgroup [�,�] is often denoted by� ′, the term derived series makes sense. Again,
we look at several equivalent characterisations of solvability.

Theorem 3.12. Let � be a finite group. The following are equivalent.

1. � is solvable.

2. There is a sequence � = �0 ≥ �1 ≥ . . . �= = {1} such that �8 C � and �8−1/�8 is abelian for all 8.

3. There is a sequence � = �0 ≥ �1 ≥ . . . �= = {1} such that �8 C �8−1 and �8−1/�8 has prime order
for all 8.

Proof. 1 =⇒ 2 is clear.
2 =⇒ 3 : If�8−1/�8 is abelian, by the fundamental theorem of abelian groups, we can find intermediate

subgroups�8 = �1 ≤ �2 · · · ≤ �: = �8−1 so that � 9/� 9−1 has prime order. Note that the resulting � 9 need
not be normal in �, but it is normal in �8−1.

3 =⇒ 1 : We show by induction that � (8) ≤ �8 . The base case is clear, as �/�1 is abelian implies that
[�,�] ≤ �1. In general, since �8/�8+1 is abelian,

� (8+1) = [� (8)� (8) ] ≤ [�8�8] ≤ �8+1.

It is similarly easy to check:

Proposition 3.13. The class of solvable groups is closed under subgroups, quotient groups, and finite direct
products.

Unlike for nilpotent groups,

Proposition 3.14 (Three-for-two). If # and �/# are solvable, so is �.

The many characterisations of nilpotent and solvable groups make the following proposition easy.

Proposition 3.15. Every nilpotent group is solvable.21

However, the converse is not true.

Exercise 39. (3 is solvable.

Why are solvable groups interesting? It is straightfoward to check that if � and  are normal solvable
subgroups of �, then � is solvable. In particular, every finite group � contains a maximal normal solvable
subgroup (. The quotient ��(, if nontrivial, is not solvable, hence contains no abelian normal subgroups.
That is, every group is the extension of a group with no abelian normal subgroups by a solvable group.

21For example, by induction, it suffices to show that # and �/# are solvable for some nontrivial normal subgroup # .
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3.3 The Three-Subgroup Lemma

Let us study some further structure of nilpotent groups.

Definition 3.16. The lower central series of � is

� = /0(�) ≥ /1(�) ≥ . . .

where
/=+1(�) = [�, /= (�)] .

Again, for convenience, we will simply write /= when � is clear from context.
As the lower central series is obtained by repeatedly taking commutators, let us list some properties of

commutators. Some notation: just as G� denotes the conjugacy class of G in �, let G6 denote the conjugate
of G by 6, 6−1G6. Denote by [G1, . . . , G=] = [[G1, . . . , G=−1], G=] (the order matters!)

Proposition 3.17. Let G, H, I ∈ �.

(i) [G, H] = [H, G]−1.

(ii) [GH, I] = [G, I]H [H, I] and [G, HI] = [G, I] [G, H]I .

(iii) [G, H−1, I] =
(
[G, H]H−1)−1.

(iv) (Witt identity)
[G, H−1, I]H [H, I−1, G]I [I, G−1, H]G = 1.

Proof. The first three claims are straightforward to prove. For the Witt identity, observe that setting

D = GIG−1HG, E = HGH−1IH, F = IHI−1GI

yields
[G, H−1, I]H = D−1E, [H, I−1, G]I = E−1F, [I, G−1, H]G = F−1D.

Given any sets -,. ⊂ �, we can define their commutator subgroup to be

[-,. ] = 〈[G1, G2] : G1 ∈ -1, G2 ∈ -2〉

and extend this to finitely many terms,

[-1, . . . , -=] = [[-1, . . . , -=−1], -=] .

Denote by --2
1 the subgroup generated by all conjugates of elements of -1 by elements of -2,

-
-2
1 = 〈H−1GH : G ∈ -1, H ∈ -2〉.

Proposition 3.18. Let - ⊂ � and  ≤ �.
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(1) - = 〈-, [-,  ]〉.

(2) [-,  ] = [-,  ].

(3) If  = 〈.〉, then [-,  ] = [-,. ] .

Proof. (1) follows from the identity G: = G [G, :] for each G ∈ - and : ∈  .

(2) The containment [-,  ] ⊂ [-,  ] is clear. [-,  ] is generated by the elements [G, :1]:2 . Using
identity (ii) from the previous proposition,

[G, :1]:2 = [G, :2]−1 [G, :1:2] ∈ [-,  ] .

(3) Since [-,. ] = [-,. ] ≤ [-,  ] by (2), it suffices to show that [-,  ] ≤ [-,. ] . For each : ∈  ,
we have an expression

: = H
n1
1 . . . H nAA : H8 ∈ ., n8 = ±1.

If A = 1, then
[G, H1] ∈ [-,. ] , and [G, H−1

1 ] =
(
[G, H1]H

−1
1

)−1 ∈ [-,. ] 

using identity (iii) from the previous proposition. By induction on A , if A > 1, let : ′ = :H−nAA . Then,
using identity (ii) from the previous proposition,

[G, :] = [G, H nAA ] [G, : ′]H
nA
A .

This product belongs to [-,. ] by the induction hypothesis, completing the proof.

Now let us return to the relationship between the upper and lower central series. 1 = �0 ≤ �1 ≤ · · · ≤
�= = � is called a central series if each quotient �8+1/�8 is contained in the center of �/�8 .

Proposition 3.19. Let 1 = �0 ≤ �1 ≤ · · · ≤ �= = � be a central series of �.

(1) /8 ≤ �=−8+1, so /=+1 = 1.

(2) �8 ≤ / 8 , so /= = �.

(3) � is nilpotent if and only if its lower central series terminates, in which case its nilpotency class is the
length of the lower central series, which is the length of the upper central series.

Proof. We prove (1) by induction on 8, and the proof of (2) will be analogous. Clearly if 8 = 1, then /1 ≤ �=.
For 8 > 1, since �=−8+1/�=−8 is in the center of �/�=−8 , [�=−8+1, �] ≤ �=−8 . By the induction hypothesis,

/8+1 = [/8 , �] ≤ [�=−8+1, �] ≤ �=−8 .

To prove (3), note that (1) and (2) imply that the upper and lower central series are the shortest central series
of �.

To establish further relationships, we will need the following “lemma”.



3. Nilpotent and solvable groups 32

Theorem 3.20 (Three subgroup lemma). Let �,  , ! ≤ �, and # C �. If two of [�,  , !], [ , !, �], and
[!, �,  ] are contained in # , so is the third.

Proof. The Witt identity shows that if two of [ℎ, :−1, ;], [:, ;−1, ℎ], [;, ℎ−1, :] belong to a normal subgroup
of �, so does the third, and this implies the result.

From this,

Corollary 3.21. Let � be a group and 8, 9 > 0. Then,

(i) [/8 , / 9] ≤ /8+ 9 ,

(ii) /8 (/ 9 (�)) ≤ /8 9 (�),

(iii) [/8 , / 9] ≤ / 9−1 if 9 ≥ 8, and

(iv) / 8 (�// 9) = / 8+ 9// 9 .

Each can be proved by a standard induction argument, and we have seen many of those already, so the
proof is left as an exercise.

3.4 Hall’s theorems

Now let us study solvable groups.
Let Π be a set of primes. We say a number is Π′ if it is coprime to every prime in Π. Sylow’s theorem

says that for any finite group � and any prime ? dividing |� |, if Π = {?}, then there is a subgroup � ≤ �
so that |� : � | is Π′, and any two such subgroups are conjugate. What if we generalised this to an arbitrary
set of primes?

Definition 3.22. If Π is a set of primes, a Π-subgroup is a subgroup � of � if each of the primes dividing
|� | is in Π. � is a Hall Π-subgroup if it is a Π-subgroup and |� : � | is Π′.

That is, if |� | = ?
U1
1 . . . ?

UA
A is its prime factorisation, and Π = {?1, . . . , ?;}, then � is a Hall Π-

subgroup of � if and only if |� | = ?U1
1 . . . ?

U;
;
. Of course, Hall Π-subgroups need not exist; �5 has no Hall

{3, 5}-subgroup. In this section we will prove Hall’s theorem(s).

Theorem 3.23. (Hall’s first theorem) Let � be a finite solvable group, and Π a set of primes dividing |� |.
Then,

1. � contains a Hall Π-subgroup, and

2. any Π-subgroup is contained in the conjugate of a given Hall Π-subgroup.

Note that the second condition implies that any two Hall Π-subgroups are conjugate. It is perhaps
surprising that the converse of this theorem also holds.

Theorem 3.24. (Hall’s second theorem) Let � be a finite group. If � contains a Hall Π-subgroup for every
set of primes Π dividing |� |, then � is solvable.
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We will need some preliminary results.

Lemma 3.25. Let� be a finite solvable group. If " C � is a minimal normal subgroup, " is an elementary
abelian ?-group.

Proof. " is solvable, so if " is simple, then " � Z? for some prime ?. If not, then " ′ = [", "] is
characteristic in " , so it is normal in �. Since " is solvable but not simple, it has a proper normal subgroup
# of prime index, so " ′ ≤ # . By the minimality of " , " ′ = {1} so " is abelian. If ? divides |" |, then
{G ∈ " : G? = 1} is characteristic in " , hence normal in �, so " is an elementary abelian ?-group.

And recall

Proposition 2.28. (Frattini’s argument) Let � be a finite group, � C �, and % a Sylow ?-subgroup of �.
Then � = �#� (%), and |� : � | divides |#� (%) |.

Proof of Hall’s first theorem. We proceed by induction on �, the case |� | ≤ 5 a triviality. Now for the
general case, if � is simple then it has prime order, so there is again nothing to prove.

Let " be a minimal normal subgroup of �, and ! any Π-subgroup of �. We distinguish three cases:

Case (1). �/" is not a Π-group, i.e. there is a prime @ ∉ Π that divides |� : " |.

By induction, �/" contains a nontrivial Hall Π-subgroup  /" , and |� :  | is Π′. As  is a proper
subgroup of �, we again use the induction hypothesis to find a Hall Π-subgroup � of  , and this is a Hall
Π-subgroup of �.

Now, !"/" is a Π-subgroup in  /" , so it is contained in some conjugate of  /" . So a conjugate of
!" is contained in  , and applying the induction hypothesis to  , !" is contained in a conjugate of �.

Case (2). " is an elementary abelian ?-group for ? ∈ Π.

Let �/" be a Hall Π-subgroup in �/" , so � is a Hall Π-subgroup in �. By induction, !"/" is
contained in a conjugate of �"/" , so !" is contained in a conjugate of �" . By the maximality of �,
�" = �, so ! is contained in a conjugate of �.

Case (3). " is an elementary abelian ?-group for ? ∉ Π, and �/" is a Π-group.

In this case, |� | = 0?<, where |" | = ?< and Π is the set of primes dividing 0. Let #/" be a minimal
normal subgroup of �/" , so #/" is an elementary abelian @-group for some @ ∈ Π. Let & ≤ # be a
Sylow @-subgroup. If & is normal in �, we may proceed as in case (2), so we assume that #� (&) is a
proper subgroup of �. By Frattini’s argument, ##� (&) = �. Since & ≤ #� (&), and &" = # , we can
write "#� (&) = �. Then " ∩ #� (&) is normal in "#� (&) = �. " cannot be contained in #� (&) as
#� (&) ≠ �, so " ∩ #� (&) = 1. Then |#� (&) | = 0, i.e. it is a Hall Π-subgroup of �.

Now, !" ∩ #� (&) is a Π-subgroup of !"; we claim that it is in fact a Hall Π-subgroup of !" . Note
that

!" = !" ∩ � = !" ∩ #� (&)" = (!" ∩ #� (&))"

so,
|!" : !" ∩ #� (&) | = | (!" ∩ #� (&))" : !" ∩ #� (&) | = |" |
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where the last equality follows from the second isomorphism theorem and the fact that " ∩ #� (&) = 1.
If !" ≠ �, by induction ! is contained in a conjugate of !" ∩ #� (&). If !" = �, then !# = �, and
! ∩ # is a Sylow @-subgroup &1 in # . &1 is conjugate to &, so #� (&1) is conjugate to to #� (&). Further,
&1 = ! ∩ # C !, so ! ≤ #� (&1) is contained in a conjugate of #� (&).

To prove the second theorem, we will need a theorem that will be proved later using representation theory.

Theorem 3.26. [Burnside’s theorem] Groups of order ?0@1 are solvable.

Proof of Hall’s second theorem. We proceed by induction on the number of prime divisors of |� |. If �
is a ?-group, or if � has order ?0@1, then � is automatically solvable, so the theorem holds. Suppose
|� | = ?41

1 . . . ?
4:
:

contains a Hall Π-subgroup for every set of primes Π dividing |� |, but � is not solvable.
If # is a nontrivial normal subgroup of �, and � a Hall Π-subgroup of �, then � ∩ # and �#/# are Hall
Π-subgroups of # and �/# respectively. By the induction hypothesis, # and �/# are solvable, but this
contradicts our assumption that � is not solvable. So � must be simple.

By Burnside’s theorem, we know that : > 2. For each prime ?8 , let Π8 = {?1, . . . , ?: } \ {?8}, and �8 be
a Hall Π8-subgroup of �. Let � = �3 ∩ · · · ∩ �: . A quick computation tells us that |� : � | = ?43

3 . . . ?
4:
:
,

so |� | = ?41
1 ?

42
2 ; � is solvable. Let " be a minimal normal subgroup of �, and suppose " is an elementary

abelian ?1-group. |� ∩�2 | = ?41
1 is a Sylow ?1 subgroup of �, and " is normal, so " ≤ � ∩�2 ≤ �2. By

order considerations, � = (� ∩ �1)�2. It follows that

"� = "�2 ≤ �2 ≤ �

is a proper nontrivial normal subgroup of �, contradicting that � is simple. Finally, we circle back to our
original (false) assumption and deduce that � is solvable.

3.5 Supersolvable groups

Recall the equivalent definitions of a solvable group:

Theorem 3.12. Let � be a finite group. The following are equivalent.

1. � is solvable.

2. There is a sequence � = �0 ≥ �1 ≥ . . . �= = {1} such that �8 C � and �8−1/�8 is abelian for all 8.

3. There is a sequence � = �0 ≥ �1 ≥ . . . �= = {1} such that �8 C �8−1 and �8−1/�8 has prime order
for all 8.

A supersolvable group is obtained by merging definitions 2. and 3.

Definition 3.27. � is a supersolvable group if there is a sequence � = �0 ≥ �1 ≥ · · · ≥ �= = {1} such
that �8 C � and �8−1/�8 has prime order for all 8.

Vigyázz. Clearly a supersolvable group is solvable, but the converse is not true! For example, the commutator
of the alternating group �4 is isomorphic to the Klein-four group +4 which is abelian, so �4 is solvable.
However, �4 has no cyclic normal subgroup, so it cannot be supersolvable.
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Our goal is to characterise supersolvable groups by their subgroup lattices.

Definition 3.28. The subgroup lattice of a group � is the partially ordered set {� : � is a subgroup of �}
ordered by inclusion. The meet of two subgroups �,  ≤ � is the smallest subgroup containing them, i.e.
〈�,  〉, and their join is the largest subgroup contained in them, i.e. � ∩  .

In general, given a poset P, one may define its Hasse diagram. This is the directed graph on the vertex
set P with an edge (D, E) if and only if D � E and there is no other F ∈ P such that D � F � E. It is the
Hasse diagram which is typically referred to as the lattice of a group. Of course, given a finite group �, this
is a finite graph, so we may speak about things like “longest paths”. The “source” vertex of the subgroup
lattice of � is the identity subgroup, while the “sink” vertex is � itself, and every other subgroup of � lies
on a directed path from {1} to �. A natural question to ask is: do all directed paths from {1} to � have the
same length? We say � satisfies the (Jordan-Dedekind) chain condition if this holds.

Theorem 3.29 (Iwasawa). � satisfies the chain condition if and only if � is supersolvable.

Let us first look at some structure of supersolvable groups.

Lemma 3.30. If � is supersolvable, there is a unique chain 1 = #0 ≤ #1 ≤ · · · ≤ #: ≤ � such that
#8 C �, #8/#8−1 has order ?8 for some prime ?8 , and ?1 ≥ · · · ≥ ?: .

Proof. We know that � has a normal series 1 = �0 ≤ · · · ≤ �: ≤ � such that the successive quotients
are prime. Suppose �8+1/�8 has order ?8+1, �8/�8−1 order ?8 , and ?8+1 > ?8 . Then, �8+1/�8−1 has a
unique Sylow ?8+1-subgroup # 22 which is characteristic in �8+1, therefore normal in �. Replacing �8 with
# , ?8 = |�8+1/# | < |#/�8−1 | = ?8+1. Repeating this process finitely many times, we obtain the desired
series.

Corollary 3.31. If @ is the largest prime divisor of |� |, � has a normal subgroup of order @.

Corollary 3.32. If @ is the largest prime divisor of |� |, � has a unique Sylow @-subgroup.

We state the following lemma without proof, as the argument is routine.

Lemma 3.33. Abelian groups and nilpotent groups are supersolvable. Subgroups and quotients of super-
solvable groups are supersovable.

Vigyázz. A three-for-two result does not hold! For example, +4 ≤ �4 and �4/+4 are supersolvable, but �4 is
not.

Lemma 3.34. The index of a maximal subgroup in a supersolvable group is prime.

Proof. Let � ≤ � be a maximal subgroup, and " a minimal normal subgroup of prime order. If " � �,
then � ∩ " = {1}, �" = �, so |� : � | = " . Otherwise, �/" is maximal in �/" and the result follows
by induction on |� |.

22Recall Corollary 1.24.
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Proof of Theorem 3.29. Suppose � is supersolvable, and 1 = �0 ≤ �1 ≤ · · · ≤ �: = � is a directed path
in the subgroup lattice. �8−1 is a maximal subgroup in �8 , which is supersolvable, so �8/�8−1 has prime
order. Then, : is the number of prime factors (including multiplicity) of |� |, so all such paths have the same
length.

For the converse, we prove the statement for solvable groups. Then, we have a series 1 = �0 ≤ �1 ≤
· · · ≤ �: = � such that �8−1 C �8 and �8/�8−1 has prime order. This is clearly a maximal directed path, so
the length of every maximal directed path is the number of prime factors (including multiplicity) of |� |. As a
result, every maximal subgroup of� has prime index. Our goal is to find a normal subgroup # C � of prime
order. The subgroup lattice of �/# is the union of the directed paths from # to �, and since # is a minimal
subgroup of �, the subgroup lattice of �/# satisfies the chain condition, and we may apply induction to say
that �/# is supersolvable. By the minimality of # , a normal series of �/# such that successive quotients
have prime order extends to a normal series of � with the same property.

Let � be a minimal normal subgroup of �, hence an elementary abelian ?-group for some prime ?.

Case (1). � is a Sylow ?-subgroup of �.

By the Schur-Zassenhaus theorem, there exists � ≤ � such that � = ��, � ∩ � = 1. If � is properly
contained in some subgroup  ≤ �, then  ∩ � ≠ {1}, so  = � by the minimality of �. This implies that
� is a maximal subgroup of �, so � C � has prime order.

Case (2). � is not a Sylow ?-subgroup of �, and ? is not the largest prime divisor of |� |.

Let @ be the largest prime divisor of �. Since �/� is solvable, it has a normal subgroup �/� of order @.
|�| = ?:@ and is supersolvable by the induction hypothesis, so it has a unique Sylow @-subgroup &. &char�
and � C �, so & C � has prime order.

Case (3). � is not a Sylow ?-subgroup of �, and ? is the largest prime divisor of |� |.

Let % be a Sylow ?-subgroup of � containing �, so %/� is Sylow ?-subgroup of �/�. Since � is
abelian and supersolvable, �/� satisfies the chain condition. Since ? is the largest prime divisor of |�/�|,
%/� C �/�, so % C �. Further, � C %, so �∩ / (%) is nontrivial. However, / (%)char%, so �∩ / (%) C �,
hence � ≤ / (%). By the Schur-Zassenhaus theorem, there is some� ≤ � such that %� = � and %∩� = {1}.
Let  be a maximal subgroup of � containing �, so |� :  | = ?. Since  ∩ � is normal in both  and
%,  ∩ � = {1} or �. In the first case, � has order ? and we are done. In the second case, � ≤  . By the
induction hypothesis,  satisfies the chain condition so  is supersolvable and contains a minimal normal
subgroup �1 ≤ � of order ?. Then, #� (�1) ≤  , and �1 ≤ � ≤ / (%), so �1 C � has prime order.

4 Permutation groups

How do we generalise the idea of a transitive permutation group? We can define :-transitivity, where
we would like 1-transitivity to just be transitivity. Let Ω(:) denote the set of ordered :-tuples of Ω whose
elements are pairwise distinct. If � acts on Ω, then it induces an action on Ω(:) by

(l1, . . . , l:) → (l16, . . . , l:6).
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Definition 4.1. � acts :-transitively on Ω if its induced action on Ω(:) is transitive.

We would like :-transitivity to imply (: − 1)-transitivity, which is not immediate from this definition,
and we would also like it to mean that after “removing one level” of transitivity, we obtain a (: −1)-transitive
action. For these reasons, the following characterisation is often more useful.

Proposition 4.2. Let : > 1 and l ∈ Ω. � acts :-transitively on Ω if and only if �l acts (: − 1)-transitively
on Ω \ {l}.

Proof. This is a standard definition-chasing type argument. Suppose�l acts (: −1)-transitively onΩ \ {l}
for every l ∈ Ω. Let (U1, . . . , U:) and (V1, . . . , V:) be in Ω(:) . Then there is some 6 ∈ �U1 and ℎ ∈ �V:
such that

(U1, . . . , U:)
6
−→ (U1, V2, . . . , V:)

ℎ−→ (V1, V2, . . . , V:).

So 6ℎ is the desired element of �. The reverse implication is even easier to prove.

Corollary 4.3. If � acts :-transitively on Ω, and |Ω| = =, then =(= − 1) . . . (= − : + 1) divides |� |.

If � acts faithfully on a set of cardinality =, we will say � is a permutation group of degree =.

Exercise 40. (= is =-transitive and �= is (= − 2)-transitive.

Corollary 4.4. If � is a finite (= − 2)-transitive group of degree =, then � is �= or (=.

Sajnos, there are not “many” :-transitive groups. In fact, for : ≥ 6 and arbitrary =, the only :-transitive
groups of degree = are �= and (=. This motivates the definition of a primitive permutation group, which has
weaker requirements than 2-transitivity.

4.1 Primitive permutation groups

Let � be a finite group acting transitively on Ω. Δ ⊂ Ω is a block for � if for every 6 ∈ �, Δ ∩ Δ6 = Δ
or Δ ∩ Δ6 = ∅. Further, the sets {Δ6 : 6 ∈ �} partition Ω. Of course, we may take the trivial blocks: Δ = Ω
or Δ = {l} for some l ∈ Ω, and these will be blocks for any group �.

A system of blocks corresponds to a �-invariant equivalence relation ∼ on Ω, where l ∼ l′ implies
l · 6 ∼ l′ · 6 for all 6 ∈ �.

Definition 4.5. � is a primitive permutation group on Ω if � is transitive and � has no nontrivial blocks.

Equivalently,

Proposition 4.6. A transitive group � acts primitively on Ω if and only if each stabilizer �l is a maximal
subgroup of �.

Proof. Here is another definition-chasing argument. Suppose � acts primitively on Ω, and let � be a
subgroup of � properly containing some �l . Define

Δ = {l · ℎ : ℎ ∈ �}.
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Since � properly contains �l , |Δ | ≥ 2. Further, suppose Δ · 6 ∩ Δ ≠ ∅ for some 6 ∈ �. Then, for some
ℎ ∈ �,

l6 = lℎ =⇒ ℎ−16 ∈ �l =⇒ 6 ∈ �.

So Δ is a block for �. If � is a proper subgroup of �, then |� : �l | < |� : �l | = |Ω|, so Δ is a nontrivial
block for �, which is not possible, so �l is maximal.

Conversely, suppose � is not primitive; let Δ be a nontrivial block and ∼ the corresponding equivalence
relation. Again, let � be the setwise stabilizer of Δ ,

� = {6 ∈ � : Δ · 6 ⊂ Δ}

� is a proper subgroup of � since � is transitive, and clearly � properly contains any stabilizer �l for
l ∈ Δ .

Exercise 41. If � ≤ (Ω and � ≤ (Γ then the “natural” action of � × � on Ω × Γ is not primitive.

Clearly, if a subgroup is maximal, so are all of its conjugates. So the problem of determining maximal
subgroups is in some sense equivalent to the problem of determining primitive actions of a group. We will
see this more explicitly when we apply the O’ Nan-Scott theorem (the classification of all finite primitive
permutation groups) to determine all maximal subgroups of (=.

This is a good point to stop and remark on the difference between the pointwise stabilizer and the setwise
stabilizer of Δ ⊂ Ω. The setwise stabilizer is

� {Δ } =
{
6 ∈ � : Δ · 6 = Δ

}
,

while the pointwise stabilizer is

�Δ =
{
6 ∈ � : X6 = X,∀X ∈ Δ

}
=

⋂
X∈Δ

� X .23

Exercise 42. If � is 2-transitive, then � is primitive.

Is there a converse to this exercise?

Theorem 4.7 (Jordan). Let� ≤ SymΩ be a finite primitive permutation group. LetΔ ⊂ Ω, 1 ≤ |Δ | ≤ |Ω|−2.

(a) If �Δ is transitive on Γ, then � is 2-transitive on Ω.

(b) If �Δ is primitive on Γ, then � is ( |Δ | + 1)-transitive on Ω.

Proof. For convenience, let |Ω| = =.

(a) We proceed by induction on Δ; if |Δ | = 1, this is clear. Suppose |Δ | > 1, and also that |Δ | ≤ =/2.
Since Δ is not a block for �, there is some 6 ∈ � for which

1 ≤ |Δ · 6 ∩ Δ | < |Δ |

By order considerations, Γ∩Γ ·6 ≠ ∅. Since 〈�Δ , �Δ ·6〉 ≤ �Δ∩Δ ·6, the latter subgroup is transitive on
Γ ∪ Γ · 6, so we apply the induction hypothesis. If |Δ | > =/2, then |Γ| ≤ =/2, so we use the induction
hypothesis and the same argument as earlier.

23Not to be confused with the � X sets of topology.



4. Permutation groups 39

(b) To make our lives easier, let us say � is :-primitive if it is :-transitive and the pointwise stabilizer of
any :-element set is primitive. Equivalently,� is :-primitive if it is transitive and every point stabiliser
is (: − 1)-primitive. Our goal is to show that if �Δ is primitive on Γ, then � is ( |Δ | + 1)-primitive on
Ω. Again, we use induction, the base case |Δ | = 1 being clear. If |Δ | ≥ 2, we consider �Δ ·6∩Δ as in
(a) which is also primitive, and apply induction to obtain that � is 2-primitive. So for any X ∈ Δ , � X

is primitive, and we apply induction again to obtain that � X is |Δ |-primitive.

Exercise 43. If � ≤ (? is transitive where ? is a prime, then � is primitive.

Corollary 4.8. If� ≤ (= is primitive and contains a ?-cycle where ? is prime, then� is (=−?+1)-transitive.

Proof. Let Γ be the support of the ?-cycle 6 ∈ �, and Δ = Ω \ Γ. Since 6 is transitive on Γ, so is �Δ , but
any transitive group on a ?-element set is primitive.

Corollary 4.9. If � ≤ (= is primitive and contains a 2-cycle, then � = (=. If � contains a 3-cycle, then
� ≥ �=.

Theorem 4.10 (Bechert’s bound). If� ≤ (= is primitive, either� = �=,� = (=, or |(= : � | ≥ b(=+1)/2c!.

Proof. Let Δ be a (cardinality) minimal set such that �Δ = 1, i.e. if 6 and ℎ agree on Δ , then 6 = ℎ. Call Δ
the base of �. If |Δ | ≤ =/2, since each element of � is uniquely determined by its action on Δ ,

|� | ≤ =(= − 1) . . . (= − |Δ | + 1) = =!
(= − |Δ |)!

or,
|(= : � | ≥ (= − |Δ |)! ≥ b(= + 1)/2c!

If |Δ | > =/2, we want to show that � contains a 3-cycle so we can apply the previous corollary. Since
Γ = Ω \ Δ has smaller cardinality than Δ , �Γ ≠ 1. Choose a nonidentity element 6 ∈ �Γ. There is some
X ∈ Δ such that X · 6 ≠ X. Since Δ \ {X}, is also not a base for�, there is some ℎ ∈ �Δ\{X } such that X · ℎ ∈ Γ.
It is then routine to check that ℎ6ℎ−16−1 is the 3-cycle (l, l · ℎ, l · 6).

4.2 Minimal normal subgroups

We will classify primitive permutation groups by properties of their minimal normal subgroups. For the
rest of this section, we only consider finite groups.

Lemma 4.11. If " C � is a minimal normal subgroup, then " is a direct product of pairwise isomorphic
finite simple groups.

It will be useful to define the following notion.

Definition 4.12. A group " is characteristically simple if it has no nontrivial characteristic subgroups.

For example, a simple group is characteristically simple because every characteristic subgroup is nor-
mal. What does this have to do with the lemma? If " is a minimal normal subgroup, then it must be
characteristically simple, and further
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Lemma 4.13. Any characteristically simple group " is the direct product of pairwise isomorphic simple
groups.

Proof. Suppose " is not simple, and let ) be a minimal normal subgroup of " . Since ) is not characteristic
in " , we consider all the subgroups of the form q()) : q ∈ �DC ("). Each of these is isomorphic to ) , thus
a minimal normal subgroup in " . First, suppose q1()) ≠ q2()). Then q1()) ∩ q2()) must be trivial by
minimality. That is, for some : ∈ N,

{q()) : q ∈ �DC (")} = {q1()), . . . , q: ())}

where the q8 ())’s are pairwise disjoint. So,

q1()) × . . . q: ()) ↩→ "

However, the above direct product is characteristic in " by construction, so it must be all of " .
If ) contains a nontrivial normal subgroup # , then q1(#) × . . . q: (#) is characteristic in " , a contra-

diction. So " is the direct product of pairwise isomorphic simple groups.

Lemma 4.14. Any normal subgroup of a direct product of finite simple groups is equal to the direct product
of some of them.

Proof. We may assume the groups are all nonabelian. Let

# C (1 × · · · × (: = �

For each (8 , [#, (8] is normal in �, so [#, (8] = 1 or (8 . If # and (8 commute, then # ∩ (8 = 1, otherwise
(8 ≤ # .

Given a group � = �1 × · · · × �: , let c8 : � → �8 denote the canonical projection for 8 = 1, . . . , : .

Definition 4.15. A subgroup � ≤ � = �1 × · · · × �: is called a subdirect product if c8 (�) = �8 for
8 = 1, . . . , : .

For example, if " = ) : , then the full diagonal subgroup � = {(C, . . . , C) : C ∈ )} is a subdirect product
of " .

Exercise 44. If " = ) : is the direct product of pairwise isomorphic nonabelian simple groups, then the full
diagonal subgroup � is self-normalizing in " .

Lemma 4.16. Suppose " = )1 × · · · × ): is the direct product of pairwise isomorphic nonabelian simple
groups, and � is a subdirect product of " . There exists a partition of [:] into nonempty sets �1, . . . , �; such
that � =

∏;
9=1 � 9 , where � 9 is the full diagonal subgroup of

∏
8∈� 9 )8 .

If ; = 1, then � is the full diagonal subgroup, and if ; = : , then � = " .

Proof. We proceed by induction on : , the case : = 1 being clear. Let ( ⊂ [:] be minimal such that
� = � ∩∏

8∈( )8 ≠ {1}. Since � is nontrivial, |( | ≥ 1. Further, � C �, so c8 (�) C c8 (�) for 8 ∈ (. By
the minimality of (, c8 (�) = c8 (�) for 8 ∈ (. For the same reason, ker(c8

��
�
) is trivial for each 8 ∈ (, so �

is the full diagonal subgroup of
∏
8∈( )8 . If ( = [:], then we are done.
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Suppose ( ( [:], and let c( denote the projection onto
∏
8∈( )8 . � C c( (�), and � is self-normalizing

in
∏
8∈( )8 , so � = c( (�). Let � ′ = �∩

∏
8∉( )8 . Clearly �∩� ′ = {1}, � and � ′ commuute, and � = �� ′,

so � = � × � ′. We only need to show that for each 8 ∈ [:] \ (, c8 (� ′) is nontrivial. Then c8 (� ′) C c8 (�)
implies that c8 (� ′) = )8 , and we can apply the induction hypothesis to � ′.

Fix 8 ∈ [:] \ ( and C ∈ )8 , so there exists ℎ ∈ � such that c8 (ℎ) = C. Define ℎ′ so that c 9 (ℎ′) = c 9 (ℎ) if
9 ∈ [:] \ (, and c 9 (ℎ′) = 1 otherwise, i.e. ℎ′ and ℎ agree on [:] \ (. Since ℎ′ℎ−1 ∈ �, ℎ′ ∈ � and c8 (ℎ′) = C
as desired.

Minimal normal subgroups of primitive permutation groups

The following lemma will be used several times, so it is worth remembering.

Lemma 4.17. A nontrivial normal subgroup # of a primitive group � is transitive.

Proof. Let # partition the ground set Ω into orbits; since # is nontrivial, each orbit has size > 1. Then, for
any 6 ∈ �, if U and V are in the same #-orbit,

U · = = V =⇒ U · 6(6−1=6) = V · 6,

then U · 6 and V · 6 are in the same #-orbit. In other words, the #-orbits form a system of blocks for �, so
# must be transitive.

Finally,

Proposition 4.18. If � is primitive, then � has either

1. a unique minimal normal subgroup, or

2. exactly two minimal normal subgroups which are regular, centralize each other, and are isomorphic.

Proof. Suppose � contains two distinct minimal normal subgroups, "1 and "2. Then,

["1, "2] ≤ "1 ∩ "2 = 1

so they centralize each other. The centralizer of a transitive group is semi-regular, so "1 and "2 are regular.
Further, since "1 and "2 are also transitive subgroups of ( = (Ω, their centralizers �( ("1) and �( ("2)
are also regular; by order considerations, "2 = �( ("1) and "1 = �( ("2). We know that any regular group
is permutation isomorphic to its right regular representation, and it is not hard to show that its centralizer
corresponds to its left regular representation; this shows that "1 and "2 are permutation isomorphic.

Definition 4.19. The socle of a group � is the group generated by the minimal normal subgroups of �.

Corollary 4.20. If " is the socle of �, then " C �. In fact, "char�.

Corollary 4.21. The socle of a primitive permutation group is the product of pairwise isomorphic simple
groups.

Theorem 4.22 (Burnside again). Let � be a finite 2-transitive group. Then � has a unique minimal normal
subgroup " such that either



4. Permutation groups 42

1. " is an elementary abelian ?-group, and regular, or

2. " is nonabelian, simple, and primitive.

Proof. Let " be a minimal normal subgroup of " , so " is characteristically simple.
First suppose " is elementary abelian. Then " ≤ �� ("), so " is regular. Proposition 4.18 tells us that

" is the unique minimal normal subgroup of �
Now suppose " is not elementary abelian. If " is regular, then � embeds in " o �DC ("). �DC (") is

the stabilizer of the identity, so it acts transitively on " \ {1}. Then all nonidentity elements of " have the
same order, which must be prime, a contradiction, So " is not regular and again unique by Proposition 4.18.
To show that " is primitive, we will use a fact about Frobenius groups that will be proved later using
representation theory.

We say a permutation group � is a Frobenius group if it is transitive, not regular, and every nonidentity
element has at most one fixed point. The Frobenius kernel  of a Frobenius group is

 = {6 ∈ � : 6 has no fixed points } ∪ {1}.

We will later show that the Frobenius kernel is a normal subgroup of � in subsection 6.2, and take it for
granted for now. We want to show that if " is not primitive, then " is a Frobenius group, and that  C �,
contradicting the minimality of " .

Let Δ be a (cardinality) minimal nontrivial block for " . Then Δ · 6 is a block for " for every 6 ∈ �. By
the minimality of Δ , |Δ ∩ Δ · 6 | ≤ 1. Since � is 2-transitive, any two elements of Ω are contained in some
Δ · 6, and by the above observation 6 is uniquely determined. Let ℓU,V be the unique block Δ · 6 containing
U, V ∈ Ω.

Suppose 6 ∈ " fixes both U, V ∈ Ω: 6 ∈ "U,V. Then 6 fixes the block ℓU,V , and for any W ∉ ℓU,V, 6 fixes
the blocks ℓU,W and ℓV,W setwise, so it fixes W. This yields "U,V ≤ "U,W . By interchanging the roles of V and
W, we obtain that every element of "U,W fixes every point outside ℓU,W , in particular the points of ℓU,V . So 6
fixes all points of Ω, i.e. 6 = 1 and " is a Frobenius group. If  is the Frobenius kernel in " , then

U(6:6−1) = U =⇒ (U6): = (U)6.

that is 6:6−1 has the same number of fixed points as : , so  C �, which is the contradiction we wanted.
Finally, now that we know that " is primitive, assume that " is not simple. By Proposition 4.18 it

either has a unique minimal normal subgroup – but this is not possible because a unique minimal normal
subgroup is characteristic – or it has two isomorphic minimal normal subgroups (1 and (2. Again, (1 × (2
is characteristic in " , so " = (1 × (2. " acts faithfully on (1 by conjugation, so let # be the normalizer
of " in Sym((1), and � the normalizer of (1, i.e. the stabilizer of (1 under conjugation by # . (1 is either
mapped to itself, or to (2, so |# : � | = 2. Further, � ≤ � so � � (1 o �DC ((1) is 2-transitive, and �DC ((1)
is transitive on (1 \ {1}, again a contradiction.

4.3 Wreath products

Recall the definition of a semidirect product in subsection 2.4. Let us make this more complicated. We
will partially follow the notation of [2]. Suppose  is a group and � is an operator group24 on  . We know
we can define the semidirect product  o �. What if we have additional structure?

24Recall Definition 2.25.
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If � acts on a set Γ, let � =  Γ = {1 : Γ→  } be the set of functions Γ→  . This has a natural group
structure under pointwise multiplication: 11′(W) = 1(W)1′(W). We can define � to be an operator group on
� as follows. Write the action of ℎ ∈ � on 1 ∈ � as 1ℎ, and define

1ℎ (W) = 1(Wℎ−1).

In other words, 1ℎ (Wℎ) = 1(W).

Definition 4.23. The wreath product of  by �, denoted  o �, is the group � o �.

Each function 1 : Γ →  is determined by a string (0W)W∈Γ ∈  Γ . � acts on  |Γ | by permuting the
coordinates: ℎ sends 0W to the (Wℎ)-th coordinate.

If  acts on a set Δ , then  o � acts on the set Δ × Γ. Namely,(
X′, W′

)
·
(
(0W)W∈Γ, ℎ

)
=

(
X′0W′ℎ, W

′ℎ
)
.

It might be useful to break this down into the actions of � o {1} and {1} o �.(
X′, W′

)
·
(
(0W)W∈Γ, 1

)
=

(
X′0W′, W

′) ,(
X′, W′

)
·
(
(1)W∈Γ, ℎ

)
=

(
X′, W′ℎ

)
.

We call this the canonical action of the wreath product. Where do wreath products occur in nature?

Proposition 4.24. Let ) be a nonabelian simple group. Considering �DC ()) as a permutation group on ) ,
and (: as a permutation group on [1, . . . , :],

�DC () :) � �DC ()) o (: = �DC ()): o (: .

Proof. The intuition is that any automorphism of ) : can act as an automorphism on each copy of ) , and
permute the : copies of ) , and that these are the only possible automorphisms. We will establish the map
k : �DC ()) o(: → �DC () :), and leave it to the reader to check the details. For (01, . . . , 0: ; c) ∈ �DC ()) o(: ,
define

k (01,...,0: ;c) (C1, . . . , C:) = (C1c−101c−1 , . . . , C: c−10: c−1).

Of course, any group is a permutation group with respect to its right regular action, so we may forget
about the sets Δ and Γ. Define the standard wreath product  o � as the wreath product with respect to the
right regular actions, i.e.,

 o � =  � o �.

The underlying sets Δ and Γ and the corresponding actions of  and � will typically be clear from context,
so we will use the same wreath product notation for them all.

Proposition 4.25. If  and � are transitive on Δ and Γ respectively, then the canonical action of, =  o�
on Δ × Γ is transitive as well.
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Here is where the name “wreath product” comes in. Think of Δ × Γ as a wreath consisting of Γ copies of
Δ . � o {1} permutes each copy of Δ within itself, while 1 o� permutes the Γ copies amongst each other. In
other words,, is like a symmetry group for the wreath: it can rotate the wreath itself, or rotate each object
on the wreath.
Exercise 45. Let  and � act transitively on Δ and Γ respectively. If |Δ | > 1 and |Γ| > 1, show that the
canonical action of  o � is imprimitive.

Product action of a wreath product

So let’s define a primitive action of  o �. Just as we considered  Γ to define the wreath product, we
consider ΔΓ, the set of functions 5 : Γ→ Δ . We can define an action of  o � on this set as follows:

5 (1,ℎ) (W) =
(
5 (Wℎ−1)

)
1(Wℎ−1).

Again, it will be helpful to break this action down to understand what is happening. For (1, 1) ∈ , ,
5 (W) = 5 (1,1) (W) · 1(1). And for (1, ℎ) ∈ , , 5 (W) = 5 (1,ℎ) (Wℎ−1).

It is routine to check that this does define a right group action. When is it primitive?

Theorem 4.26. The product action of  o � is primitive if and only if  is primitive but not regular, and �
is transitive.

Proof. We begin with the implication =⇒ .
Suppose  is not primitive, and let ∼ be a  -invariant equivalence relation on Δ . Define an equivalence

relation ' on ΔΓ by 5 ' 6 if 5 (W) ∼ 6(W) for each W ∈ Γ. This is a nontrivial equivalence relation for the
product action of  o �.

Next, suppose  is primitive and regular, so  = F? for some prime ?. Then, ΔΓ = FΓ? is a vector space
over F?. Define an equivalence relation by 5 ' 6 if

∑
W 5 (W) =

∑
W 6(W).

Finally, suppose � is not transitive. Fix an �-orbit ( ⊂ Γ and define an equivalence relation ' on ΔΓ by
5 ' 6 if 5 (W) = 6(W) for all W ∈ (.

Now for the converse implication ⇐= . Let � be the base group of the wreath product and identify �
with {1} o �. Clearly �, and hence , = � o � is transitive. If qX : Γ → Δ is the constant X function for
some X ∈ Δ , then its stabilizer in, is

! =

{
(1, ℎ) : 1(W) ∈  X for all W ∈ Γ

}
.

Let " be a subgroup of , properly containing !. It suffices to show that " = , . Since , = �!,
" = (" ∩ �)!, so " ∩ � properly contains ! ∩ �. Since 1 o {�} ≤ " , we will show that " ∩ � = �, i.e.
� ≤ " .

For some W0, there exists (1, 1) ∈ " ∩ � with 1(W0) ∉  X . Since  is primitive and not regular,
 X = # ( X), hence for some D ∈  X

1(W0)−1D1(W0) ∉  X .

Define 1′ : Γ→  by

1′(W) =
{
[1(W0), D], W = W0

1, otherwise.
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Since 1′(W) ∉  X , 〈 X , 1′(W0)〉 =  by primitivity of  . Further, (1′, 1) ∈ " by construction, so" contains
the subgroup

�(W0) =
{
(1′, 1) ∈ � : 1′(W) = 1 for all W ≠ W0

}
.

Since � ≤ " and � is transitive on Γ,
∏
W �(W) = � ≤ " , as desired.

Finally, let us look at one more type of wreath product - the twisted wreath product. This is a wreath
product with some additional structure imposed. Let  and � be groups, with a subgroup � ≤ � that is
an operator group on  , i : � → �DC ( ) a homomorphism. Let � act on itself with right multiplication;
this is a right action. We want to define a wreath product that is compatible with the action of � on  . For
example, for 5 ∈ �, we would like

(:ℎ)ℎ∈� · 5 = (:ℎ 5 )ℎ∈� = (i 5 −1 · :ℎ)ℎ∈� .

Define
�� =

{
(:ℎ)ℎ∈� : :ℎ 5 = i 5 −1 · :ℎ,∀ℎ ∈ �

}
.

It is routine to check that �� is a group, and that � is an operator group on it. The twisted wreath product
 o� � is defined as

�� o �.

4.4 Classification of primitive permutation groups

We devote the entirety of this section to proving the following theorem. The proof follows the presentation
of [6], with some assistance from [2] and [4].

Theorem 4.27 (O’ Nan-Scott). Let � be a finite primitive permutation group on Ω with socle " . Then � is
of one of the following types.
Affine type:

(HA) " is an elementary abelian ?-group, hence the unique minimal normal subgroup of�." is regular, so
Ω can be identified with a 3-dimensional vector space over F?. Then� ≤ ��! (3, ?), �� (3, ?) ≤ �,
and the stabilizer of the zero vector �0 ≤ �! (3, ?) has no invariant subspaces.

Almost simple type:

(AS) " is a nonabelian simple group ) . Then " is the unique minimal normal subgroup of � and does not
act regularly. �==()) ≤ � ≤ �DC ()). The proof of this classification requires the Schreier conjecture,
that $DC ()) � �DC ())/�==()) is solvable, the only proof of which relies on CFSG.

Diagonal type:

(HS) � has two minimal normal subgroups, each of which is a nonabelian simple group ) , and " � ) ×) .
The action of " is primitive, and " � ).�==()) ≤ � ≤ ).�DC ()).

(SD) " � ) : for : ≥ 2 and this is the unique nonabelian minimal normal subgroup of �. Let � =

{(C, . . . , C) : ) ∈ )} ≤ " be the diagonal subgroup. " acts on the cosets of � in " by right
multiplication; we can identify Ω with ) :−1. In this case, " C � ≤ " ·

(
$DC ()) × (:

)
and � induces

a primitive subgroup of (: on the : factors of " .
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Product type:

(HC) � has two minimal normal subgroups, each of which is ) : , : ≥ 2, for ) a nonabelian simple group,
so " � ) : × ) : . As in the HS case, " acts transitively, and " � ) : .�==() :) ≤ � ≤ ) : .�DC () :).
Further, � induces a subgroup of �DC () :) that acts transitively on the : factors of ) : .

(CD) This is similar to the case SD; Ω = Δ : , and � ≤ � o (: , where � is of type SD on Δ . If the minimal
normal subgroup of � is ) ;, then ) :; is the minimal normal subgroup of�, and� induces a transitive
subgroup of (: .

(PA) � has a unique nonabelian minimal normal subgroup ) : , : ≥ 2, that does not act regularly. Ω = Δ :

and � ≤ � o (: , where � is an AS group. Further, � induces a transitive subgroup of (: in its action
on the : factors of " .

Twisted wreath type:

(TW) � has a unique nonabelian minimal normal subgroup ) : , : ≥ 2, that acts regularly. � is isomorphic
to a twisted wreath product ) o� �U.

Let us begin by studying the socle " .

Case (1: HA). " is abelian.

By Proposition 4.18, if� has an abelian minimal normal subgroup " , then it is unique. By Lemma 4.11,
" is an elementary abelian ?-group. " is a transitive subgroup of (Ω contained in its centralizer, so
" is regular. In other words, " � + , a 3-dimensional vector space over F?, and for any stabilizer �U,
� = " o �U. We want to show that � ≤ ��! (3, ?). For each 0 ∈ �U, define an automorphism
q0 : " → " by q0 (<) = 0−1<0. Fix a Z-isomorphism \ : " → + (so that we can write the vector space
operation additively). Then, \−1q0\ ∈ �! (3, ?) for all 0 ∈ �U. Since each element of � can be written
uniquely as <0 for < ∈ " and 0 ∈ �U, we have an injective homomorphism k : � → +∗ o �! (3, ?),

k(<0) = (<\)∗(\−1q0\).

This yields � ≤ ��! (3, ?). Further, the image of " under k is +∗, so +∗ � �� (3, ?) ≤ k(�). Finally,
Exercise 46. If �� (3, ?) ≤ � ≤ ��! (3, ?), then � is primitive if and only if �0, the stabilizer of the zero
vector, has no nontrivial invariant subspaces.

In this case, � is called the holomorph of an abelian group (HA).

Case (2: AS). " is a nonabelian simple group ) .

Each 6 ∈ � induces an automorphism of ) by conjugation, so we have a homomorphism i : � →
�DC ()). Then, ker(i) = �� ()). However, �� ()) C � and �� ()) ∩ ) = {1}, so by the uniqueness of ) ,
�� ()) = {1}. So i is injective, and ) � i()) = �==("). It only remains to show that ) is not regular, and
this is the part which relies on the Schreier conjecture, so we will omit the proof.

In this case, � is called an almost simple group (AS).

For the remaining cases," = ) : where) is a nonabelian simple group and : ≥ 2.Write" = )1×· · ·×): ,
where )8 � ) . Let c1, . . . , c: be the projections from " → )8 .
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Case (3). The stabilizer "U, c8 ("U) = )8 for some 8.

Since �U is maximal in � and � acts transitively on the set {)1, . . . , ): }, "U is a maximal proper
�U-invariant subgroup of " . So, c 9 ("U) = )9 for all 9 = 1, . . . , : , i.e. "U is a subdirect product of " .
So there exists a partition of [:] into nonempty sets �1, . . . , �; such that "U = �1 × · · · × �;, where � 9 is
the diagonal subgroup of

∏
8∈� 9 )8 . Suppose |�1 | = <. �U acts transitively on {�1, . . . , �;}, so |� 9 | = < for

all 9 = 1, . . . , ;. As a consequence, < ≥ 2 since "U is a proper subgroup of " . Let % ≤ (: be the group
induced by the action of � on T = {)1, . . . , ): }.

Case (3.1: HS and SD). ; = 1, i.e. "U is the full diagonal subgroup.

Suppose Δ ⊂ T is a nontrivial block for %. The diagonal subgroup . of " corresponding to this system
of blocks is a �U-invariant subgroup of " with "U ≤ . ≤ " . This contradicts the maximality of "U, so
either % = {1}, : = 2 and � has two minimal normal subgroups, or % is primitive.

In the first case, )1 and )2 are regular minimal normal subgroups of �, acting on Ω by left and right
multiplication respectively. " acts primitively on Ω. � embeds in the normalizer of )1 in (Ω, which is
isomorphic to ) o �DC ()). � is of type holomorph of a simple group (HS).

In the second case, if % is primitive, then " must be the unique minimal normal subgroup of �. The
action of " onΩ is equivalent to the action of " on the right cosets of "U, the diagonal subgroup, so we can
identifyΩwith) :−1.� embeds in the normalizer of of" in (Ω, which is isomorphic to" ·

(
$DC ())×(:

)
.25

� is of type simple diagonal (SD).

Case (3.2: HC and CD). ; > 1, i.e. "U is not the diagonal subgroup.

Set  = )1× · · ·×)< so that �1 is the full diagonal subgroup of  , and set # = #� ( ). �1 is a maximal
#U-invariant subgroup of  . We want to find a group � of type HS or CD such that � is permutation
equivalent to a subgroup of � o (; with a product action.

For any subgroup ! ≤ # , define !∗ to be the subgroup of �DC ( ) induced by the conjugation action
of !, i.e. !∗ = !�� ( )/�� ( ). Note that �� ( ) ∩ " = )<+1 × · · · × ): , so " is “almost” contained in
�� ( ). Since " ≤ # , # is transitive on Ω so # = "#U. Then,

#∗ = "#U�� ( )/�� ( ) =  #U�� ( )/�� ( ) =  ∗#∗U.

We want to show that #U�� ( ) is a maximal subgroup of # , so let . be a maximal subgroup of #
containing it. Then, . ∩  is an #U-invariant subgroup of  containing �1, so �1 = . ∩  , hence
. ∩ " = �1 × )<+1 × · · · × ): . Further, . = (. ∩ ")#U, so . ∗ = �∗1#

∗
U = #

∗
U (since �1 stabilizes U), so

. = #U�� ( ).
Finally, set � = #∗, and let Γ be the coset space of #∗U in �. Each point stabilizer of this action is

isomorphic to #∗U, which is a maximal subgroup of #∗, so � acts primitively on Γ. The socle of � is
 ∗ �  , so � is of type HS or SD. Further, an easy calculation shows that |Ω| = |Γ|;.

It remains to show that � is a subgroup of � o (; with the product action on Γ;. We give the embedding
and leave it to the reader to check the details. Choose a right transversal {61, . . . , 6;} for #U in �U (and thus

25Take this fact for granted
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for # in �) so that �681 = �8 for 1 ≤ 8 ≤ ;. Write  8 =  68 so that � permutes the set { 1, . . . ,  ;}. For
6 ∈ �, write � = =66̄, for 6̄ ∈ {61, . . . , 6;} and =6 ∈ # . Finally, embed � in � o (; by

6 → (0∗1, . . . , 0
∗
; ; c),

where c ∈ (; is the permutation induced by 6 on { 1, . . . ,  ;}, and 08 = (686) (686)−1 ∈ # . If � is of type
HS or SD, � is of type holomorph of a compound group (HC) or complex diagonal (CD) respectively.

Case (4: PA and TW). '8 = c8 ("U) is a proper subgroup of )8 for each 8.

Each '8 is an #� ()8)-invariant subgroup of )8 , so �U is transitive on the set {)1, . . . , ): }. So each '8
is equal to the image of '1 under an isomorphism )1 → )8 . Since '1 × · · · × ': is �U-invariant, it is equal
to "U, and '1 is a maximal #�U ()1)-invariant subgroup of )1. Set # = #� ()1), and for ! ≤ # , denote
!∗ = !�� ()1)/�� ()1). By a similar argument as earlier, # = "#U and #∗ = )∗1 #

∗
U.

Suppose )∗1 � #∗U. Again, we can show that #U�� ()1) is a maximal subgroup of # , so that setting
� = #∗, � acts primitively on the coset space Γ = �/#∗U. � has a unique minimal normal subgroup )∗1 � )1
so � is of type AS. A similar argument to case 3.2 shows that � ≤ � o (: with the product action on Γ: . �
is said to be of type product action (PA).

Now suppose )∗1 ≤ #
∗
U, so #∗ = #∗U. If '1 ≠ 1, then

)1 = 〈')1
1 〉 ≤ 〈'

�� ()1)#U
1 〉 = 〈'#U1 〉 ≤ �U,

which is nonsense. So, '1 = 1, and " � )1 × · · · ×): is regular, hence the unique minimal normal subgroup
of�. Define i : # → �DC ()1) to be the natural homomorphism so that keri = �� ()1) ∩�U, and Imi = #∗U
contains �==()1) = )∗1 . By an application of the Schreier conjecture (the details of which can be found in
[6]), we can show that " is equal to the kernel of the action of � on {)1, . . . , ): } by conjugation. Thus,
the stabilizer �U acts faithfully and transitively on {)1, . . . , ): }. Let � ≤ �U be the stabilizer of )1, so that
i : � → �DC ()1) is defined. We claim that � is isomorphic to the twisted wreath product )1 o� �U with its
product action on |)1 |: .

For 1 ≤ 8 ≤ : , choose 28 ∈ �U so that )28
8
= )1. Then, for < = (<1, . . . , <:) ∈ )1 × . . . ): , <288 ∈ )1.

Clearly � = "�U, so define the map ν : � → )1 o� �U by

ν : <D → ν<D,

where ν< is the function �U → )1 given by ν<(28@) = <28@8 . Some manipulation shows us that ν is the
desired isomorphism, and � is said to be of twisted wreath type (TW).

4.5 Subgroups of (=

Let us look at some applications of primitive permutation groups to subgroups of the symmetric group.

Theorem 4.28. The alternating groups �= are simple for = ≥ 5.

Proof. We proceed by induction. There are many ways to check the base case = = 5, the easiest of which is
perhaps to show that no nontrivial union of conjugacy classes in �5 divides 60.
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Suppose = > 5. Let # C �= be a nontrivial normal subgroup. Since �= is at least 4-transitive for
= > 5, �= is primitive, so # is transitive. The stabilizer �1 is isomorphic to �=−1, and hence is simple. So
# ∩�1 = 1 or # ∩�1 = �1. The second case cannot hold as �1 is a maximal subgroup and # is transitive.
So we are in the first case, and again by the maximality of�1,�1# = �=. By the Schur-Zassenhaus theorem,
there is a homomorphism i : �1 → �DC (#) so that �= is the semidirect product # o �1 with respect to
this homomorphism. �1 is not normal in �=, so i cannot be trivial. Since keri C �1, i must be injective.
However, it is easy to check that �DC (#) is not 3-transitive, while �=−1 is 3-transitive for = > 5.

Next,

Proposition 4.29. The Sylow ?-subgroups of (?: are isomorphic to Z? o · · · oZ?, the :-fold wreath product.

Proof. This is a simple matter of checking that (1) Z? o · · · oZ? embeds in (?: (it does), and (2)
��Z? o · · · oZ? �� =

? (?
:−1)/(?−1) (it is).

5 Representations of finite groups

Now we will switch tracks entirely. We wrung out many deep results just by considering each group as
a permutation group. The idea of representation theory is a generalisation of this: by considering homomor-
phisms of a group � into the automorphism group of some structure, we would like to use properties of the
structure to derive properties of the group. The structure we consider here is a vector space.

Definition 5.1. Let � be a group and + a vector space over a field F. A representation of � is a group
homomorphism i : � → �! (+). The dimension of + is called the degree of the representation.

Just as with group actions, we say a representation is faithful if keri is trivial. For any group � and
any vector space + , we have a trivial representation, the identically identity homomorphism. If � is a finite
group of order =, and F a field, consider the =-dimensional vector space + over  with basis {46 : 6 ∈ �}.
The left regular action of � defines the regular representation i,

i6 (4ℎ) = 46ℎ .

In general, given a left action of � on a set - and a field F, define a vector space + with basis {4G : G ∈ -},
so the corresponding representation i of � is

i6 (4G) = 46G .

Vigyázz. We have returned to writing actions from the left, because we typically consider matrix multiplica-
tion from the left.

5.1 Irreducible representations and Maschke’s theorem

As always, when we define a new structure, we want to ask (1) when do we call two objects equivalent?,
and (2) what are the “irreducible” objects, upto equivalence?



5. Representations of finite groups 50

Definition 5.2. Two representations i : � → �! (+) and k : � → �! (,) are equivalent if there is an
invertible linear map g : + → , so that

gi6 = k6g; ∀6 ∈ �.

That is, dim+ = dim, , and i and k differ by a change of basis. This answers the first question. To
answer the second, let us instead ask, “Which representations are clearly not irreducible?”

Definition 5.3. If i8 : � → �! (+8) is a representation ∀8 ∈ �, define the direct sum i =
⊕

8∈� i8 as the
representation i : � →

⊕
8∈� �! (+8) over the vector space

⊕
8∈� +8 .

When � is finite and each +8 is finite-dimensional, the matrices i6 of the direct sum are block diagonal
matrices. In general, the embedding of each +8 ≤ + is invariant under each i6.

Definition 5.4. Let i : � → �! (+) be a representation, and* ≤ + a subspace.* is an invariant subspace
for i if i6 (*) ⊆ * for each 6 ∈ �.

Since each i6 is invertible, this is equivalent to saying i6 (*) = *.

Definition 5.5. A representation i : � → �! (+) is irreducible if it has no nontrivial invariant subspaces.

Definition 5.6. A representation i : � → �! (+) is completely reducible if every invariant subspace* has
an invariant orthogonal complement *̃, that is + = * ⊕ *̃ and *̃ is invariant under �.

Proposition 5.7. A finite-dimensional representation is completely reducible if and only if it is the direct
sum of irreducible representations.

Proof. Suppose i : � → �! (+) is completely reducible. Choose minimal invariant subspaces *1, . . . ,*:
such that *1 ⊕ · · · ⊕ *: = * ≤ + has maximal dimension. * is an invariant subspace, and by complete
reducibility,* = + .

Conversely, let + = *1 ⊕ . . . *: be the direct sum of irreducible representations, and * an invariant
subspace of + . Choose a maximal invariant subspace *̃ such that * ∩ *̃ = {0}. If some *8 is not contained
in * ⊕ *̃, since *8 is irreducible, *8 ∩ (* ⊕ *̃) = {0}. In particular, *8 ⊕ *̃ is a larger invariant subspace
contradicting the maximality of *̃, so* ⊕ *̃ = + .

We would like every representation to be completely reducible, so that we can focus on studying
irreducible representations.

Theorem 5.8 (Maschke). Let � be a finite group. If charF does not divide |� |, then every representation of
� over F is completely reducible.

Proof. Suppose+ has a nontrivial invariant subspace*. By extending to a basis of+ , we can find a subspace
, such that + = , ⊕*. Every element can be uniquely expressed as D + F ∈ * +, ; let c be the projection
to* along, , c(D + F) = D. Define ĉ : + → + by

ĉ =
1
|� |

∑
6

i6ci6−1 .
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Claim (1). ĉ is a projection onto* along kerĉ.

Since * is invariant, + = * ⊕ i6 (,) for each 6 ∈ �, and i6c is the corresponding projection onto *.
So,

ĉ(D + F) = 1
|� |

∑
6

i6ci6−1 (D + F) = 1
|� |

∑
6

i6ci6−1 (D) = D.

Claim (2). kerĉ is an invariant subspace.

We want to show that if ĉ(E) = 0, then for any ℎ ∈ �, ĉiℎ (E) = 0.

ĉiℎ (E) =
1
|� |

∑
6

i6ci6−1iℎ (E)

= iℎ

(
1
|� |

∑
6

iℎ−16ci6−1ℎ (E)
)

= iℎ ĉ(E) = 0.

Clearly* ⊕ kerĉ = + , so this completes the proof.

Maschke’s theorem is an if and only if statement; the converse will be easier to prove once we have seen
the group algebra.

5.2 The group algebra

There is another, sometimes more useful way to think of representations. A representation i : � →
�! (+) endows + with a �-action and an F-action, both of which commute.

_ · i6 (E) = i6 (_E); ∀6 ∈ �,∀_ ∈ F.

Definition 5.9. If� is a group and F a field, the group algebra F� is the ring of finite formal sums
∑
6∈� U66

where U6 ∈ F. The ring operations are∑
6∈�

U66 +
∑
ℎ∈�

Vℎℎ =
∑
G∈�
(UG + VG)G

∑
6∈�

U66
∑
ℎ∈�

Vℎℎ =
∑
G∈�

( ∑
ℎ∈�

UGℎ−1Vℎ

)
G

In other words, F� is the F-algebra generated by the elements of �. Further, if + is an F�-module,
then + is an F-vector space and the action of � on + is a representation of � on + . Conversely, given
any representation of � on a vector space + over F, there is a natural extension of this action to + as an
F�-module. Consequently, given a representation of � on +

(*) two representations are equivalent ⇐⇒ the corresponding F�-modules are isomorphic,

(*) * ≤ + is an invariant subspace ⇐⇒ * is an F�-submodule of + ,
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(*) the representation is irreducible ⇐⇒ + is a simple F�-module (it has no nontrivial submodules),
and

(*) the representation is completely reducible ⇐⇒ + is a semisimple F�-module (it is the direct sum of
simple submodules).

The equivalent formulation of Maschke’s theorem is then,

Theorem (Maschke). If � is a finite group and charF does not divide �, then F� is semisimple.

It is also easy to see that the F�-module corresponding to the regular representation of � is F� itself.

Remark. Let us take a brief detour into ring theory to make the rest of this section clear. A simple ring ' is
one which has no nontrivial (two-sided) ideals. We say a ring ' is semisimple if it is the direct sum of simple
rings. As we will see, the only simple rings are essentially the matrix rings.

Exercise 47. Let � be a finite group such that charF divides |� |.

(a) Show that
� =

{ ∑
6∈�

U66 :
∑
6∈�

U6 = 0
}

is a submodule of F�.

(b) Show that F� is not completely reducible.

We will need the following structure theorem for semisimple rings.

Theorem (Wedderburn-Artin). ' is a semisimple ring if and only if there are division rings �1, . . . , �: and
integers =1, . . . , =: so that

' � "=1 (�1) ⊕ · · · ⊕ "=: (�:).

We will primarily consider the case when F = C, and ' = C�. In this case, each division ring �8 is a
finite extension of C, so must be equal to C. In other words,

Theorem. If � is a finite group, there exist integers =1, . . . , =: so that

C� � "=1 (C) ⊕ · · · ⊕ "=: (C).

Let the image of each 6 ∈ � under this isomorphism be (i (1)6 , . . . , i
(:)
6 ).

Corollary 5.10. The map 6 → i
(8)
6 is an irreducible representation of �.

We want to show that these are the only irreducible representations of �. If i is an irreducible represen-
tation of � on a 3-dimensional vector space, we say 3 is the degree or dimension of i.

The key lemma in our proof is the following.

Theorem 5.11 (Schur’s lemma). An '-module homomorphism between two simple modules * and + is
either identically 0 or an isomorphism.

Proof. If i : * → + is a homomorphism, then ker(i) ≤ * and Im(i) ≤ + , so this completes the proof.
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Assume F is a field and � a finite group such that charF does not divide |� |. For two F�-modules *
and + , let Hom� (*,+) denote the space of all F�-module homomorphisms * → + . Hom� (*,+) is an
F-vector space, so define 〈*,+〉 = dimF Hom� (*,+).

Corollary 5.12. If* and + are simple F�-modules, then 〈*,+〉 = 1 if + � * and 〈*,+〉 = 0 otherwise.

Proposition 5.13. Let+ be anF�-modulewith a decomposition+ = +1⊕· · ·⊕+A into simpleF�-submodules,
and let, be any simple F�-module. If =(,,+) denotes the number of +8 isomorphic to, , then

〈,,,〉 · =(,,+) = 〈,,+〉 = 〈+,,〉.

Proof. Since
Hom� (,,+) �

∏
8

Hom� (,,+8),

we have
〈,,+〉 = 〈,,+1〉 + · · · + 〈,,+:〉 = =(,,+)〈,,,〉,

where the last equality follows from Schur’s lemma.

Lemma 5.14. For any irreducible F�-module *, the map Hom� (F�,*) → * that sends i → i(1) is an
isomorphism. In particular, 〈F�,*〉 = dimF*.

Proof. Clearly the map i → i(1) is a homomorphism. Since any such F�-module homomorphism is
uniquely determined by its value at 1, this map is an isomorphism.

Theorem 5.15. Each irreducible representation appears in the regular representation with multiplicity equal
to its degree.

Proof. Let* be an irreducible F�-module. Then,

=(*, F�) = 〈F�,*〉 = dimF(*).

To summarise the results of this section: we know that the group algebra C� corresponds to the regular
representation of �. By Wedderburn-Artin,

C� � "=1 (C) ⊕ · · · ⊕ "=: (C)

is its decomposition into simple submodules, or irreducible representations. Further, every irreducible
representation, or simple module of � corresponds to some "=8 (C). This tells us that these : matrix rings
in the decomposition of C� correspond to the irreducible representations of � (where each appears with
multiplicity equal to its dimension).

As a corollary, if 38 is the dimension of the 8th irreducible representation, then

|� | =
:∑
8=1

32
8 .

We will in fact prove that 38 divides |� | in subsection 6.1.
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5.3 Characters and class functions

Now that we know that a finite group has only finitely many representations over C, our next question is
- how many?

Theorem 5.16. : is the number of conjugacy classes of �.

Proof. Given that
C� � "=1 (C) ⊕ · · · ⊕ "=: (C),

we will show that the dimension of the center of both sides is equal to the number of conjugacy classes. For
a ring ', its center is defined as one would expect,

/ (') = {0 ∈ ' : 0A = A0,∀A ∈ '}.

On one hand,
/ ("=1 (C) ⊕ · · · ⊕ "=: (C)) � / ("=1 (C)) ⊕ · · · ⊕ / ("=: (C)).

The center of a matrix algebra is the set of scalar matrices, which has dimension 1 over the base field, so
the dimension of the above expression is : . Now let us consider / (C�). Since C is commutative, / (C�)
consists exactly of those elements of C� which commute with �.

/ (C�) =
{∑
6

U66 : ℎ
∑
6

U66 =
∑
6

U66ℎ,∀ℎ ∈ �
}

=

{∑
6

U66 :
∑
6

U66 =
∑
6

U6ℎ
−16ℎ,∀ℎ ∈ �

}
=

{∑
6

U66 : U6 = Uℎ6ℎ−1 ,∀ℎ ∈ �
}
,

and it is clear that the dimension of this space is the number of conjugacy classes of �.

Corollary 5.17. � is abelian if and only if every irreducible representation is 1-dimensional.

Proof. � is abelian if and only if the number of conjugacy classes is equal to |� |. So,

dimF F� = |� | =
|� |∑
8=1

=2
8 .

Each =8 must be equal to 1, so each irreducible representation is 1-dimensional.

This relationship between conjugacy classes and irreducible representations is better studied using
characters.

Definition 5.18. The character j of a representation i : � → �! (3,C) is defined as

j(6) = Tri6 .
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An irreducible character is one that corresponds to an irreducible representations. If two representations
are equivalent, the corresponding characters are equal. Further, the characters are constant on each conjugacy
class

j(G−16G) = Tr(iG−1i6iG) = Tri6 = j(6).

We can also show a converse, that if two irreducible characters are equal, then the corresponding representa-
tions are equal. Recall that the distinct irreducible representations of � are given by 6 → i

(8)
6 in the notation

of Corollary 5.10. Let j8 denote the corresponding irreducible character and 48 = (0, . . . , 1, . . . 0) ∈ C�
with the (=8 × =8) identity matrix in the 8th coordinate and 0 everywhere else. Then, for 8 ≠ 9 , j8 (48) = =8
but j 9 (48) = 0, so j8 ≠ j 9 .

Let us study some properties of characters before we obtain some results as corollaries of Theorem 5.15.
An easy observation is that j(1), as the trace of the identity matrix, is equal to the dimension of the
representation. This implies that |� | = ∑

j j(1)2, where the sum runs over the irreducible characters of �.

Lemma 5.19. Let i be a representation of � with character j, and let 6 ∈ � with |6 | = =.

(a) i6 is similar to a diagonal matrix with entries (n1, . . . , nA ).

(b) n=
8
= 1 for each 8 = 1, . . . , A .

(c) j(6) = ∑A
8=1 n1, and |j(6) | ≤ j(1).

(d) j(6−1) = j(6).

Proof. The restriction of i to a subgroup is also a representation, so we may assume that � = 〈6〉. By
Maschke’s theorem, i6 is similar to a block diagonal matrix corresponding to the decomposition into
irreducible representations. Since 〈6〉 is abelian, each irreducible representation is 1-dimensional, so its
matrix is diagonal, proving (a). (b) follows easily from the fact that 6= = 1, and (c) and (d) are similarly easy
to show.

Lemma 5.20. If i = i1 ⊕ . . . i< are representations of�, and j1, . . . , j< are the characters corresponding
to i1, . . . , i<, then the character of i is

j(6) = j1(6) + · · · + j<(6).

Let d denote the character corresponding to the regular representation q.

Lemma 5.21. d(1) = |� | and d(6) = 0 if 6 ≠ 1.

Proof. Consider � = {61, . . . , 6=} as a basis for the vector space. Each matrix q6 is a permutation matrix,
and d(6) counts the number of 1’s on the diagonal. However, (q6)88 = 1 if and only if 668 = 68 , and the
lemma follows immediately from this.

Since each irreducible representation appears in the regular representation with multiplicity j(1) for its
corresponding character j,
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Corollary 5.22. If j1, . . . , j: are the irreducible characters of �,

d(6) =
:∑
8=1

j8 (1)j8 (6).

Corollary 5.23. If j1, . . . , j: are the irreducible characters of �,

|� | =
:∑
8=1

j8 (1)2.

We say a character j is linear if it is an irreducible one-dimensional character, i.e. j(1) = 1.

Corollary 5.24. Every irreducible character of an abelian group is linear. In general, a finite group � has
exactly |� : [�,�] | linear characters.

5.4 Inner products of characters

A C-valued function that is constant on the conjugacy classes of � is called a class function. The set of
all class functions is a vector space over C with dimension the number of conjugacy classes of �. We want
to show

Theorem 5.25. The irreducible characters form a basis for all class functions.

We can define an inner product on the space of class functions on a finite group � by26

〈`, ν〉 = 1
|� |

∑
6∈�

`(6)ν (6).

Restricted to characters, we obtain

〈j1, j2〉 =
1
|� |

∑
6∈�

j1(6)j2(6−1).

Theorem 5.26 (First orthogonality relation). If j8 and j 9 are irreducible characters of �, then 〈j8 , j 9〉 = 1
if j8 = j 9 , and 0 otherwise.

Proof. Let
C� � "=1 (C) ⊕ · · · ⊕ "=: (C)

and let 48 denote the element (0, . . . , 0, 1, 0 . . . , 0) with the =8 × =8 identity matrix in the 8th position, and the
0 matrix everywhere else. Write 48 =

∑
6 U66; we want to compute the coefficients U6. For ℎ ∈ �,

ℎ48 = (0, . . . , i (8)ℎ , . . . 0).

If d is the character of the regular representation,

d(ℎ48) =
∑
6

U6d(ℎ6) = Uℎ−1 |� |.

26Check that this is a well-defined Hermitian inner product.
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On the other hand, using the decomposition of the regular representation and the identity for ℎ48 ,

d(ℎ48) =
:∑
9=1

j 9 (1)j 9 (ℎ48) = j8 (1)j8 (ℎ).

That is,
Uℎ =

1
|� | j8 (1)j8 (ℎ),

so
48 =

1
|� |

∑
6

j8 (1)j8 (6)6.

Using the fact that 484 9 = X8 948 ,27

484 9 =
1
|� |2

∑
6

j8 (1)j8 (6)6
∑
ℎ

j 9 (1)j 9 (ℎ)ℎ

=
j8 (1)j 9 (1)
|� |2

∑
6,ℎ

j8 (6−1)j 9 (ℎ−1)6ℎ

=
j8 (1)j 9 (1)
|� |2

∑
6,G

j8 (6−1)j 9 (G−16)G.

Looking at the coefficient for G = 1,

8 = 9 =⇒ 1
|� |

∑
6

j8 (6)j8 (6−1) = 1,

8 ≠ 9 =⇒ 1
|� |

∑
6

j8 (6−1)j 9 (6) = 0.

This gives us a proof of the fact that the irreducible characters form a basis of the space of class functions
– in fact, an orthonormal basis.

Corollary 5.27. A class function j is an irreducible character of � if and only if j(1) > 0 and 〈j, j〉 = 1.

Corollary 5.28. Two irreducible representations of� are equivalent if and only if their characters are equal.

Corollary 5.29. Let ν be a class function of �, and ν =
∑:
8=1 28j8 its expression in terms of the irreducible

characters. ν is a character of � if and only if each 28 is a nonnegative integer.

A natural question to ask is: what if the sum in the inner product is taken over the irreducible characters
of �? Let �AA (�) denote the set of irreducible characters.

Theorem 5.30 (Second orthogonality relation). Let 6, ℎ ∈ �. Then,∑
j∈� AA (�)

j(6)j(ℎ)

is equal to 0 if 6 is not conjugate to ℎ, and equal to |�� (6) | otherwise.
27For those unfamiliar, X8 9 = 1 if 8 = 9 and 0 otherwise.
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Proof. Let 61, . . . , 6: be representatives of the conjugacy classes of �, �; (68) the corresponding conjugacy
class, and j1, . . . , j: the irreducible characters. Let - be the : × : matrix whose (8 9)-entry is j8 (6 9). The
first orthogonality relation says,

|� |X8 9 =
∑
6∈�

j8 (6)j 9 (6) =
:∑
E=1
|�; (6E ) | · j8 (6E )j 9 (6E ).

Let � be the : × : diagonal matrix with diagonal entries |�; (68) |. We can represent this system of equations
as the : × : matrix equation

|� | · � = -�-∗,

where -∗ = -) . This says |� |−1 · - is a left inverse for �-∗, so they commute.

|� |� = �-∗-.

As a system of equations, this yields

|� |X8 9 =
∑
E

|�; (68) | · jE (68)jE (6 9).

Since |� |/|�; (68) | = |�� (68) |,28 we get∑
j∈� AA (�)

j(6 9)j(68) = |�� (68) |X8 9 .

Let us look at the character table of a group � to shed some light on these orthogonality relations. This
is a : × : table whose rows are indexed by the irreducible characters of �, and columns by the conjugacy
classes, i.e. we consider the matrix - that we defined as a table. If we consider the standard Hermitian inner
product on C: , 〈G, H〉C =

∑:
8=1 G8H8 , then the first orthogonality relation says,

Corollary 5.31. The rows of the character table are orthogonal.

and the second orthogonality relation says,

Corollary 5.32. The columns of the character table are orthogonal.

Let us look at some example of character tables. If l denotes a primitive 3rd root of unity, then the
following is the character table on Z3.

0 1 2
1 1 1 1
j1 1 l l2

j2 1 l2 l

In general, if Z= is the cyclic group with generator 6, and Z= denotes a primitive =th root of unity, then the
character table - is given by

-8 9 = j8 (6 9) =
(
Z=

) 8 9
, 8 = 0, . . . , = − 1.

28This is by the orbit-stabilizer lemma!
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Let us try to determine the character table of the smallest nonabelian group, (3. We immediately know
of two characters: the trivial character and the sign character, which sends each permutation to its sign in
{±1}. Since [(3, (3] = �3(� Z3), and |(3 : �3 | = 2, these are the only linear characters of (3. Further, (3
has exactly 3 conjugacy classes, so the remaining irreducible character must be 2-dimensional.

1 (12) (123)
1 1 1 1
jsign 1 −1 1

? 2 ? ?

Since the columns of the character table are orthogonal, we can fill in the remaining values.

1 (12) (123)
1 1 1 1
jsign 1 −1 1
jstandard 2 0 −1

The last character corresponds to the standard representation of (3. Let {41, 42, 43} be the standard basis
vectors of C3, and let + ⊂ C3 be the 2-dimensional subspace + = {_141 + _242 + _343 : _1 + _2 + _3 = 0}.
The action of (3 on + by permuting the standard basis vectors of C3 is the standard representation.

5.5 Induced representations

Given a representation i of a group �, its restriction i� to a subgroup � ≤ � is a representation of
�. Conversely, given a representation of a subgroup � of �, how can we extend it to the whole group? We
study induced representations by studying their characters.

Definition 5.33. Given a class function ν on �, where � ≤ �, the induced class function on � is

ν� (6) = 1
|� |

∑
G∈�

ν> (G6G−1)

where ν> (G6G−1) = ν (G6G−1) if G6G−1 ∈ �, and 0 otherwise.

Vigyázz. If � C �, ν is constant on the conjugacy classes of �, but not necessarily on the conjugacy classes
of � in �, which is why we need this “averaging”. That is, for 6 ∈ � and G ∈ �, it is not necessary that G
and 6G6−1 are conjugate in �.

Equivalently, let ) be a transversal (a set of representatives) for the cosets of � in �. Then,

ν� (6) =
∑
C ∈)

ν> (C6C−1).

It is not immediately clear that the induction of a character of � is a character of �, and we will need the
following statement to prove it.

Proposition 5.34 (Frobenius reciprocity). Let � ≤ �, ν be a class function on � and ` a class function on
�. Then,

〈ν, `� 〉� = 〈ν� , `〉� .
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Proof. We have

〈ν� , `〉 = 1
|� |

∑
6

ν� (6)`(6)

=
1
|� |

1
|� |

∑
6

∑
G

ν> (G6G−1)`(6)

=
1
|� |

1
|� |

∑
6

∑
G

ν> (G6G−1)`(G6G−1)

=
1
|� |

1
|� |

∑
G

∑
H

ν> (H)`(H)

=
1
|� |

∑
H∈�

ν (H)`(H)

= 〈ν, `� 〉.

Corollary 5.35. If � ≤ � and ν is a character of �, then ν� is a character of �.

Proof. We only need the fact that for any irreducible character j ∈ �AA (�), 〈ν� , j〉 is a nonnegative integer,
which follows from Frobenius reciprocity.

Corollary 5.36. If � ≤ � and ν ∈ �AA (�), then for some j ∈ �AA (�), ν is a constituent of j� .

Clifford’s theorem

How do we induce characters from normal subgroups? Let # C � and ν ∈ �AA (#). � acts on �AA (#)
by conjugation,

ν → ν6; ν6 (G) = ν (6G6−1).

Each stabilizer is called an inertia subgroup,

�� (ν) = {6 ∈ � : ν6 = ν}.

Theorem 5.37 (Clifford’s theorem). Let # C � have finite index, and j ∈ �AA (�). For any ν ∈ �AA (#)
such that 〈j# , ν〉 ≠ 0, there exist positive integers 4 and C so that

j# = 4

C∑
8=1

ν8 ,

where ν8 runs over the orbit of ν, and C = |� : �� (ν) |.

Proof. It is clear that the distinct conjugates of ν, say ν1, ν2, . . . , νC , correspond to the index of the inertia
subgroup. For = ∈ # ,

ν� (=) = 1
|# |

∑
6

ν0(6−1=6) = 1
|# |

∑
6

ν6 (=)
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If q ∈ �AA (#) is different from the ν8 , then

0 = 〈
∑
6

ν6, q〉 = 〈(ν�)� , q〉 = 0.

Since j is a constituent of ν� by Frobenius reciprocity, it follows that 〈j# , q〉 = 0. So all the irreducible
constituents of j# are among the ν8 , and

j# =

C∑
8=1
〈j# , ν8〉ν8 .

Since j6
#
= j# for all 6 ∈ �,

〈j# , ν8〉 = 〈j# , ν〉 = 4

is the desired integer.

Theorem 5.38 (Still Clifford). Let � = �� (ν). Define

I = {k ∈ �AA (�) : 〈k# , ν〉 ≠ 0},

and
G = {j ∈ �AA (�) : 〈j# , ν〉 ≠ 0}.

The map k → k� is a bijection of I onto G. Further, if k� = j, then k is the unique irreducible constituent
of j� in I.

As a corollary of this, the irreducible character j from Clifford’s first theorem is in fact induced by an
irreducible character of the inertia subgroup.

Proof. Let k ∈ I as in the statement, and j ∈ �AA (�) be an irreducible constituent of k� . By Frobenius
reciprocity, k is an irreducible constituent of j� , and since ν is a constituent of k# , 〈ν, j# 〉 ≠ 0. Then,

j# = 4

C∑
8=1

ν8

and ν is �-invariant, so
k# = 5 · ν

for some integer 5 . k is a constituent of j# , so 5 ≤ 4. So,

4C · ν (1) = j(1) ≤ k� (1) = C · k(1) = 5 C · ν (1) ≤ 4C · ν (1).

Since we have equality everywhere, j(1) = k� (1), so j = k� . Further,

〈k# , ν〉 = 5 = 4 = 〈j# , =D〉.

This shows that the map k → k� is injective. Suppose k1, k2 ∈ I, k�1 = j, and k2 is a constituent of j� .

〈j# , ν〉 ≥ 〈(k1 + k2)# , ν〉 = 〈(k1)# , ν〉 + 〈(k2)# , ν〉 > 〈(k1)# , ν〉,

which contradicts Frobenius reciprocity. So, k1 is the unique irreducible constituent of j# .
Finally, suppose j ∈ �AA (�), and 〈j# , ν〉 ≠ 0. Then there is an irreducible constituent k ∈ �AA (�) of

j� with 〈k# , ν〉 ≠ 0. Clearly k ∈ I and j is an irreducible constituent of k� , i.e. j = k� .
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6 Applications of representation theory

6.1 Burnside’s theorem

Theorem 3.26. [Burnside’s theorem] Groups of order ?0@1 are solvable.

Lemma 6.1. If j is an irreducible character of �, then

|� : �� (6) |
j(6)
j(1)

is an algebraic integer.

Proof. Let 61, . . . , 6: represent the conjugacy classes of �, and say 6 ∼ 68 if they are conjugate. A basis for
/ (C�) is then given by the elements B8 =

∑
6∼68 6. Since each product B8B 9 ∈ / (C�), there are nonnegative

integers 0 9< such that

B8B 9 =

:∑
<=1

0 9<B<.

Since each irreducible representation appears in the decomposition of C�, we consider the representation i
associated to j as a map i : C� → C�. Then, i(B8) is equal to some _8 ∈ / (C�). Let � = (0 9<):9,<=1 and
_ = (_<)<=1,...,: .

� · _ = _8 · _.

As an eigenvalue of an integer matrix, _8 is an algebraic integer. So, on one hand since i(B8) is a diagonal
matrix,

j(B8) = Tr(i(B8)) = _8j(1)

and on the other,
j(B8) =

∑
6∼68

j(6) = |� : �� (68) |j(68).

Lemma 6.2. The dimension of an irreducible representation divides the order of the group.

Proof. It is clear that |� |/j(1) is a rational number. We want to show that it is an algebraic integer, and then
use the fact that the only rational numbers that are algebraic integers are the integers. Since 〈j, j〉 = 1,

|� |
j(1) 〈j, j〉 =

∑
6

1
j(1) j(6)j(6

−1) =
:∑
8=1

|� : �� (68) |
j(1) j(68)j(6−1

8 ).

j(6−1
8
) is the sum of some roots of unity, so the expression on the right is an algebraic integer.

Lemma 6.3. If gcd
(
|� : �� (6) |, j(1)

)
= 1, then j(6) = 0 or |j(�) | = j(1).
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Proof. Write j(6) = n1 + · · · + n3 as a sum of Ath roots of unity, where A is the order of 6 (by Lemma 5.19).
Let  be a splitting field over Q for the =th roots of unity, where = = |� |. We can write

1 = D · j(1) + E · |� : �� (6) |; D, E ∈ Z.

Then,
j(6)
j(1) = D · j(6) + E · |�

: �� (6) |
j(6)
j(1) .

This is an algebraic integer, so

Nm /Q
(
j(6)/j(1)

)
=

∏
Gal( /Q)

f

(
j(6)/j(1)

)
∈ Z.

However, as j(6) is a sum of 3 roots of unity, and j(1) = 3, for all f ∈ Gal( /Q),���f (
j(6)/j(1)

)��� ≤ 1 =⇒ Nm /Q
(
j(6)/j(1)

)
∈

{
− 1, 0, 1

}
.

If the norm is 0, then j(6) = 0, and if it is ±1, then |j(6) | = j(1).

Lemma 6.4. If the conjugacy class of some element 6 ≠ 1 has size a prime power, then either� is not simple
or � has prime order.

Proof. Recall the notation �; (6) for its conjugacy class, and that |�; (6) | = |� : �� (6) |. If |�; (6) | = 1
for all 6 ∈ �, then � is abelian and the lemma holds. Suppose � is nonabelian. If |�; (6) | = 1 for some
nonidentity 6 ∈ �, then / (�) is nontrivial, so � is not simple.

So we may assume that for all nonidentity 6 ∈ �, |�; (6) | = ?4, for 4 > 0, where the prime ? may depend
on 6. We want to show that there is an irreducible character j such that gcd(j(1), ?) = 1 and |j(6) | = j(1).
Suppose for every such character, j(6) = 0 by the previous lemma. By the second orthogonality relation,
since 1 and 6 are not conjugate,

0 =
∑
j

j(1)j(6) = 1 +
∑
? |j (1)

j(1)j(6).

Rearranging,
−1/? =

∑
? |j (1)

j(1)j(6)/?.

The above expression must be an algebraic integer, but −1/? is not, a contradiction.
Choose j such that |j(6) | = j(1) and gcd(?, j(1)) = 1. If the kernel of the corresponding representation

i is nontrivial, then� is not simple – so suppose it is faithful. Then� � i(�). Since |j(6) | = j(1), and j(6)
is the sum of j(1) roots of unity, there is a basis in which i6 is a scalar matrix. In this case, / (�) � / (i(�))
is nontrivial.

Proposition 6.5. There is no simple group of order ?0@1.

Proof. If � is simple, then |/ (�) | = 1, and no nonidentity conjugacy class has prime power order by the
previous lemma. Each nonidentity class must have size divisible by ?@, so |� | = 1 + : ?@ by the class
equation, but this is nonsense.

Burnside’s theorem now follows easily by induction on |� |. By Proposition 6.5,� has a nontrivial normal
subgroup # , and # and �/# are solvable by induction.
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6.2 The Frobenius kernel

Now we will prove that the Frobenius kernel of a Frobenius group is a normal subgroup, which is a
fact we used in Theorem 4.22. We will formulate an entirely group-theoretic statement, and magically use
representation theory to prove it. We say a permutation group � ≤ (Ω is a Frobenius group if it is transitive,
not regular, and every nonidentity 6 ∈ � has at most one fixed point.

Definition 6.6. The Frobenius kernel  of a Frobenius group � is

 =
{
6 ∈ � : 6 has no fixed points

}
∪ {1}

By Burnside’s lemma,

1 =
1
|� |

∑
6∈�

fix(6) = 1
|� |

( ∑
6∉ 

1 + |Ω|
)
=
|� | − | | + |Ω|

|� | .

In other words,
| | = |Ω|.

Of course, having named  a kernel, we would like it to be a normal subgroup of �. Clearly, 1 ∈  , and if
: ∈  has no fixed points, neither does :−1. Similarly, if : ∈  and 6 ∈ �, then 6−1:6 also has no fixed
points. Surprisingly, the tricky part of the proof is to show that  is in fact a subgroup: that it is closed under
the group operation.

Lemma 6.7. The following are equivalent.

1. � is a Frobenius group.

2. There is a nontrivial proper subgroup � ≤ � such that ∀6 ∈ � \ �, 6−1�6
⋂
� = {1}.

Proof. The action of � on the cosets of a stabiliser by conjugation is equivalent to the action of � on Ω. So
if � is a Frobenius group, set � = �l . Conversely, if � is such a subgroup, � is a Frobenius group acting
by conjugation on the cosets of �.

Corollary 6.8. If � is a subgroup as in part 2 of the lemma, then the Frobenius kernel of � is

 = � \
(⋃
6

6−1�6

)
∪

{
1
}
.

Theorem 6.9. The Frobenius kernel is a normal subgroup of �.

Proof. We will construct  as the kernel of some homomorphism, by using the alternative characterisation
of a Frobenius group. Let � be a nontrivial subgroup of � as in the lemma.

Step (1). If ℎ1, ℎ2 ∈ � are conjugate in �, then they are conjugate in �.

If ℎ1 = 6
−1ℎ26 for 6 ∈ �, then 6−1�6 ∩ � ≠ ∅, so 6 ∈ �.
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Step (2). If 5 is a class function on �, the extension 5̃ to � defined by

5̃ (G) =
{
5 (ℎ), if G is conjugate to ℎ
5 (1), otherwise

is a class function on �.

Since conjugacy is an equivalence relation, we only need to check that this is well-defined, i.e if G is
conjugate to both ℎ1 and ℎ2 in �, then ℎ1 is conjugate to ℎ2 in �, but this was proved in step 1.

Step (3). 5̃ : C� → C is a ring homomorphism that preserves complex conjugation.

This is more of an observation than a statement requiring proof.

Step (4). If 5 is a class function on �, and C a class function on �, then

〈 5̃ , C〉� = 〈 5 , C� 〉� + 5 (1)
(
〈1� , C〉� − 〈1� , C� 〉�

)
.

This formula is linear in 5 , and every class function on � can be expressed as a linear combination of
1� and some class function 5 such that 5 (1) = 0. So it suffices to check it for these two types of functions.

If 5 = 1� , then 5̃ = 1� , so

〈1� , C〉� =
1
|� |

∑
6∈�

C (6) = 1
|� |

=∑
8=1

∑
G∈6−1

8
�68

C (G) = 1
|� |

∑
G∈�

C (G) = 〈1� , C� 〉� ,

where 61, . . . , 6= form a system of coset representatives for �/�.
Now suppose 5 (1) = 0.

〈 5̃ , C〉� =
1
|� |

∑
6∈�

5̃ (6)C (6) = 1
|� |

=∑
8=1

∑
G∈6−1

8
�68

5̃ (G)C (G) = 1
|� |

∑
G∈�

5̃ (G)C (G) = 〈 5 , C� 〉� .

Step (5). The map 5 → 5̃ is an isometry, i.e.

〈 51, 52〉� = 〈 5̃1, 5̃2〉� .

We use Frobenius reciprocity:

〈 5̃1, 5̃2〉� = 〈 5̃1 5̃2, 1�〉� = 〈 51 52, 1� 〉� = 〈 51, 52〉� .

Step (6). If 5 is a character of � and C is a character of �, then 〈 5̃ , C〉� is an integer.

Now, C� is a character of �, so from step 4,

〈 5̃ , C〉� = 〈 5 , C� 〉� + 5 (1)
(
〈1� , C〉� − 〈1� , C� 〉�

)
∈ Z.

Step (7). If j is an irreducible character of �, then j̃ is an irreducible character of �.
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j̃ is an irreducible character of � if and only if j̃(1) > 0 and 〈j̃, j̃〉� = 1. Suppose j ≠ 1� , so j̃ ≠ 1� ,
then by step 5

〈j̃, j̃〉� = 〈j, j〉� = 1.

Step (8). The Frobenius kernel is the kernel of the regular representation of � extended to �.

Let d be the character of the regular representation of �; we claim that the kernel of the representation
associated to d̃ is the Frobenius kernel. This follows because d̃(G) = d(1) if G is not conjugate to any element
of �, i.e. G ∈  and d̃(G) = 0 otherwise.

6.3 Induced characters

Let us look at extending irreducible characters from a normal subgroup to the entire group.

Theorem 6.10. If�/# is cyclic and ν ∈ �AA (#) is�-invariant, i.e. ν6 = ν for all 6 ∈ �, then ∃j ∈ �AA (�)
such that j# = ν.

Proof. Let |� : # | = : , 0 ∈ � be a generator of �/# , and 0: = 1 ∈ # . Suppose ν corresponds to a
representation i of # on + . We want to define i0 ∈ �! (+) so that

(i) i0−1iGi0 = i0−1G0 for all G ∈ # , and

(ii)
(
i0

) :
= i1.

Since condition (i) corresponds to finding a good conjugate representation, we can find some matrix �
satisying it. Then, �−:iG�: = i1−1iGi1, or iG (�:i1−1) = (�:i1−1)iG . �:i1−1 commutes with every
matrix iG , and these generate the full matrix algebra by Wedderburn-Artin, so (�:i1−1) is a scalar matrix
_ · �. Setting i0 = _1/: · � yields the desired irreducible representation of �.

M-groups

Definition 6.11. j ∈ �AA (�) is monomial if there is some � ≤ � and _ ∈ �AA (�) so that j = _� and
_(1) = 1.

We say an irreducible representation is monomial if the corresponding character is. An M-group is one
for which every irreducible representation is monomial.

Theorem 6.12. Every nilpotent group is an M-group.

Proof. Let � be a nilpotent group and j ∈ �AA (�). Let � be a minimal subgroup of � so that for some
k ∈ �AA (�), j = k� . Then k is a faithful primitive character of �̄ = �/ker(k). (A primitive character is
one that cannot be induced from a proper subgroup.) Since �̄ is nilpotent, it has a normal self-centralizing
subgroup �. By Clifford’s theorem, k� = 4

∑C
8=1 ν8 , where the ν8 are some irreducible characters of �. And

k = ν �̄ induced from the inertia subgroup. But k is primitive and faithful on �̄, so C = 1, and k� = 4ν for
some ν ∈ �AA (�): ν is linear. Thus � ≤ / (k(�̄)) ≤ / (�̄), and �� (�) = �̄, so � itself must be abelian.
So k is a linear character and this completes the proof.
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6.4 The order of a finite simple group

In this section we will take a baby step towards the classification of finite simple groups. We say an
involution in a group is an element of order 2. Our main goal will be to show that the order of a finite simple
group can be bounded by the structure of its involutions. We will achieve this using characters. Let us begin
by defining the symmetric and alternating parts of a character j. Suppose j corresponds to a representation
of � on + . We can associate a representation on the space + ⊗+ , which is defined as follows. Let E1, . . . , E3
be a basis of + . A corresponding basis of + ⊗ + is given by the elementary tensors

E8 ⊗ E 9 : 8, 9 = 1, . . . , 3.

A “typical” element of + ⊗ + has the form ∑
8, 9

081 9 (E8 ⊗ E 9).

The representation of � is extended as

i6 (E8 ⊗ E 9) = i6E8 ⊗ i6E 9 .

This is then extended linearly as a representation of� on+ ⊗+ , so the corresponding action of C� on+ ⊗+
as a C�-module is given by (∑

6

U66

)
E =

∑
6

U6i6 (E).

Vigyázz. Of course, given representations of � on + and, , we can consider the C�-module + ⊗, defined
analogously. It is not obvious, but it is easy to show, that + ⊗, is unique (up to isomorphism) independent
of the choice of bases for + and, . In the theory of rings and modules, it is not typically true that if + and
, are '-modules, then + ⊗, is an '-module with A (E ⊗ F) = AE ⊗ AF. For this reason, it is not necessary
that for any U ∈ C�, U(E8 ⊗ E 9) = UE8 ⊗ UE 9 .

In the more general setting of + ⊗, , we have that

Theorem 6.13. If + and , are C�-modules with corresponding characters j and k, then + ⊗ , has
character jk, independent of the choice of basis.

Proof. This follows from the fact that for any two matrices � ∈ �! (+) and � ∈ �! (,), Tr(� ⊗ �) =
Tr(�)Tr(�), but this can also be proven directly. 29

Now, we can decompose the space, = + ⊗ + into symmetric and alternating parts as follows. Define a
linear map ∗ : , → , on the basis

(E8 ⊗ E 9)∗ = E 9 ⊗ E8 .

29The matrix Kronecker product of � ∈ �!(<,C) and � ∈ �! (=,C), � ⊗ �, is obtained by taking the (<=) × (<=) block
matrix 

011� . . . 0<1�
.
.
.

0<1� . . . 0<<�

 .
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Define
,( = {F ∈ , : F∗ = F}, ,� = {F ∈ , : F∗ = −F}.

It is clear that these are subspaces of, ,,(∩,� = 0, and since for allF ∈ , ,F+F∗ ∈ ,( andF−F∗ ∈ ,�,
the decomposition

F =
F + F∗

2
+ F − F

∗

2
tells us that, = ,( ⊕,�. Their respective bases are given by

,( =

〈
(E8 ⊗ E 9) + (E 9 ⊗ E8) : 8 ≤ 9

〉
, ,� =

〈
(E8 ⊗ E 9) − (E 9 ⊗ E8) : 8 < 9

〉
.

Finally, we want to see that ,( and ,� are C�-modules. We claim that (i6F)∗ = i6 (F∗). It suffices to
check this on the basis of elementary tensors:

(i6E8 ⊗ i6E 9)∗ = i6E 9 ⊗ i6E8 = i6
(
(E8 ⊗ E 9)∗

)
.

As a result, any character j induces a character j2 on, , which decomposes into symmetric and alternating
parts

j2 = j( + j�.

We are interested in the class function
j (2) (6) = j(62).

Proposition 6.14.
j (2) = j( − j�.

Proof. Let us compute j�. Suppose
i6E8 =

∑
:

08:E: .

Then,

i6 (E8 ⊗ E 9 − E 9 ⊗ E8) =
∑
:,;

(
08:0 9; − 0 9:08;

)
E: ⊗ E; =

∑
:<;

(
08:0 9; − 0 9:08;

)
(E: ⊗ E; − E: ⊗ E;).

So,
j�(6) =

∑
8< 9

0880 9 9 − 0 9808 9 .

This tells us that

2j�(6) =
∑
8≠ 9

0880 9 9 −
∑
8≠ 9

0 9808 9 =

(∑
8

088

) (∑
9

0 9 9

)
−

∑
8, 9

08 90 98 = Tr(i2
6) − Tr(i6)2 = j(6)2 − j(62).

Using the fact that j2 = j( + j�, we obtain the desired identity.

For the rest of this section, j denotes an irreducible character unless stated otherwise.
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Definition 6.15. The Frobenius-Schur indicator of an irreducible character j is

ν (�) = 1
|� |

∑
6

j(62).

We say j is real-valued if j(6) ∈ R for all 6 ∈ �, and complex-valued otherwise.

Proposition 6.16. If j is real-valued, ν (j) = ±1, and ν (j) = 0 otherwise.

Proof. Let 1� denote the trivial character. From the previous proposition,

ν (j) = 1
|� |

∑
6

j (2) (6) = 〈j( − j�, 1�〉 = 〈j2, 1�〉 − 2〈j�, 1�〉 = 〈j, j〉 − 2〈j�, 1�〉.

If j is not real-valued, then 〈j2, 1�〉 = 0. Since j� is a constituent of j2, and the inner product of characters
is always a nonnegative integer, 〈j�, 1�〉 = 0 and ν (j) = 0. If j is real-valued, then 〈j2, 1�〉 = 〈j, j〉 = 1.
Then 〈j�, 1�〉 = 0 or 1, so ν (j) = ±1.

Define
W(6) =

���{G ∈ � : G2 = 6}
���.

It is easy to check that W is a class function on �, so we must be able to write it as a linear combination of
irreducible characters.

Lemma 6.17.
W(6) =

∑
j∈� AA (�)

ν (j)j(6).

Proof. We need to show that writing W as a sum of irreducible characters, each coefficient 〈W, j〉 is equal to
ν (j).

〈W, j〉 = 1
|� |

∑
6∈�

W(6)j(6) = 1
|� |

∑
6

∑
G2=6

j(G2) = 1
|� |

∑
G∈�

j(G2) = ν (j).

Let C denote the number of involutions of � (we do not count the identity). Clearly W(1) = 1 + C.

Corollary 6.18.
C ≤

∑
j≠1� ∈� AA (�)

j(1).

Lemma 6.19. There is a non-identity conjugacy class with at most
(
( |� | − 1)/C

)2
elements.

Proof. Let < be the number of non-identity conjugacy classes, and let 31, . . . , 3< be the degrees of the
nontrivial irreducible characters of �. By the previous lemma,

C2/<2 ≤
( <∑
8=1

38

)2
/<2 ≤

<∑
8=1

32
8 /< =

|� | − 1
<

.
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Multiplying both sides of the inequality by |� | − 1 and rearranging,

|� | − 1
<

≤
( |� | − 1

C

)2
.

The left-hand side is the expected size of a non-identity conjugacy class, so there is a class with at most as
many elements.

Finally,

Theorem 6.20 (Brauer-Fowler). If � is a finite simple group with an involution 8, then

|� | ≤
(
|�� (8) |2

)
!

Proof. Every element of �� (8) is an involution so |�� (8) | ≤ C. Since � is simple, the action of � on the

conjugacy class of size ≤
(
( |� | − 1)/C

)2
is faithful and � embeds in the corresponding symmetric group.

|� | ≤
( |� | − 1

C

)2
!

6.5 Representations of (=

Before we determine all irreducible representations of (=, let us look at a “natural” example. (= acts
by permutation on the :-element sets of [=]; this corresponds to a representation q: of (= over an

(=
:

)
-

dimensional space. Let c: be the corresponding character, and set j: = c: − c:−1, for 1 ≤ : ≤ =/2. We
would like to show that j: is an irreducible character.

〈c 9 , c:〉 =
1
=!

∑
6∈(=

c 9 (6)c: (6).

Since q: (6) is a permutation matrix, there is a 1 on the diagonal exactly when the corresponding :-set is
fixed by�. In particular, c 9c: is the character of the action of (= on the pairs of sets (-,. ) : |- | = 9 , |. | = : ,
and this counts the number of fixed points. So 〈c 9 , c:〉 counts the average number of fixed points, but this is
the number of orbits of the action, which is 1 +min( 9 , :).30

〈j: , j:〉 = 〈c: , c:〉 − 2〈c: , c:−1〉 + 〈c:−1, c:−1〉 = 1.

And
j: (1) =

(
=

:

)
−

(
=

: − 1

)
> 0,

so j: is an irreducible character.
To determine all irreducible representations of (=, we turn to combinatorics. A partition of the integer

= into : parts is a :-tuple _ = (_1, . . . , _:) such that each _1 ≥ · · · ≥ _: > 0, and _1 + · · · + _: = =. What
does this have to do with representations of (=? Two elements of (= are conjugate if and only if they have the

30The size of the intersection - ∩ . is invariant in each orbit.
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same cycle type – they can be (uniquely) written as a product of : disjoint cycles with sizes _1 ≥ . . . _: ≥ 1,
_1 + · · · + _: = =. This immediately establishes that the number of partitions of = is equal to number of
conjugacy classes of (=, or the number of irreducible representations.

To make this correspondence explicit, we will consider the Young diagram of a partition _. This is a table
of boxes, where the 8th row has _8 boxes.

Figure 1: The Young diagram corresponding to the partition (4, 4, 2, 1) of 11.

Given a Young diagram, we define the corresponding Young tableau by filling in the boxes with the
integers 1, . . . , = in some order. We say two tableaux are (row-)equivalent if their underlying Young diagrams
are the same, and one can be obtained by permuting the elements within a row or column of the other.

1 5 9 4
3 11 6 10
2 8
7

4 5 9 1
3 6 10 11
8 2
7

Figure 2: Two (row-)equivalent Young tableaux.

A tabloid is an equivalence class of tableaux. For a fixed Young diagram _, let "_ be the vector space
whose basis is the set of _-tabloids. The action of (= on the tabloids yields a representation of (= over "_.

Example 6.21. The trivial partition _ = (=) yields the trivial representation of (=, as any two tableaux are
row-equivalent.

. . .

Example 6.22. The partition _ = (1, 1, . . . , 1) yields the regular representation C(=, as no two tableaux are
row-equivalent.

...

Example 6.23. Let _ = (= − 1, 1). Let C8 be the tabloid with 8 in the second row, for 1 ≤ 8 ≠ =. Each
permutation 6 ∈ (= sends C8 to C6 (8) , so "_ is the permutation representation C(=.
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. . .

Unfortunately, "_ does not always give us an irreducible representation. We will look at the Specht
module (_, generated by the set of polytabloids. Given a Young tableau ) , let '()) denote the subgroup of
permutations of (= that only permute the elements within each row, and � ()) the subgroup of permutations
that only permute the elements within each column. That is, the tabloid corresponding to ) is the equivalence
class [)] = {A · ) : A ∈ '())}. The polytabloid corresponding to ) is

4) =
∑

6∈� () )
f(6) · 6[)]

where f : (= → {±1} is the sign homomorphism. The submodule (_ ≤ "_ generated by the polytabloids
of _ is called the Specht module. An easy lemma to check is that

Lemma 6.24.
6 · 4) = 46 ·) .

Let us look at the Specht module of the earlier examples. Clearly, _ = (=) still yields the trivial
representation.

Example 6.25. _ = (1, 1, . . . , 1). For any tableaux ) and*, clearly � ()) = � (*), but 4) = 4* if and only if
* can be obtained from) by an even permutation. Since 6(4) ) = 4 (6) ) = f(6)4) , (_ is the one-dimensional
sign representation of (=.

...

Example 6.26. _ = (= − 1, 1). Again, if ) is a tableau with 8 in the second row, its polytabloid is of the form
{C8} − {C 9}, for some 9 ≠ 8. So,

(_ =
{
21{C1} + · · · + 2={C=} : 21 + · · · + 2= = 0

}
This is the called the standard representation of (= and it is (= − 1)-dimensional.

. . .

Let us formalise all this. Given a Young diagram _ with a corresponding tableau ) , define

A ()) =
∑

0∈' () )
0, 2()) =

∑
1∈� () )

f(1) · 1,
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and
ℎ()) = A ())2()) =

∑
0∈' () ) ,1∈� () )

f(1)01.

We will show that the left ideal generated by ℎ()) in C(= is a simple C(=-module. Another easy lemma:

Lemma 6.27.
ℎ(6)) = 6−1ℎ())6.

Given two Young diagrams U = (U1, . . . , U:) and V = (V1, . . . , V;), we say U � V if (U1, . . . , U:) is
lexicographically bigger than (V1, . . . , V;)31.

Lemma 6.28. Let U and V be Young diagrams with tableaux ) and * respectively. Then, either (a) there
exists a transposition C ∈ '()) ∩ � (*), or (b) U = V and* = 01()) for some 0 ∈ '()) and 1 ∈ � ()).

Proof. Part (a) says that there are two elements 8, 9 that are in the same row in ) and the same column as*.
Let U = (U1, . . . , U:), and V = (V1, . . . , V;). If U1 > V1, then there are two elements in the first row of ) that
are in the same column of*. Proceeding in this manner, if at some point U8 > V8 , (a) holds. Otherwise, U = V.
If (a) still does not hold, then every pair of elements in the same column of * are in different rows of ) . So
there is some 3 ∈ � (*) and 0 ∈ '()) such that 3* = 0) , or * = 3−10()). Since � (*) = 3−10� ())0−13,
for some 1 ∈ � ()),

3 = 3−1010−13,

01−1 = 3−10,

* = 01−1).

Corollary 6.29. Suppose U ≠ V and ) and* are corresponding Young tableaux. Then,

(a) ℎ(*)ℎ()) = 0, and

(b) for all 0 ∈ '()), 1 ∈ � ()),
0 · ℎ()) · f(1)1 = ℎ()).

(c) If G ∈ C(= satisfies that for all 0 ∈ '()), 1 ∈ � ()),

0 · G · f(1)1 = G,

then G ∈ Cℎ()).

Proof. (a) From our proof of the previous lemma, we see that if U ≠ V, assuming without loss of generality
that U � V, there is a transposition C ∈ '()) ∩ � (*).

ℎ(*)ℎ()) = A (*)2(*)A ())2()) = A (*)2(*)C2A ())2()) = −A (*)2(*)A ())2()) = 0.

31For the least 8 where U8 ≠ V8 , U8 > V8 .
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Here we use the observation that if C ∈ � (*), then 2(*)C = f(C)2(*).
(b) follows by a similar observation. If 0 ∈ '()), then 0 · A ()) = A ()), so

0 · ℎ()) · f(1)1 = 0 · A ())2()) · f(1)1 = A ())2()) = ℎ()).

(c) Write G =
∑
6 26 · 6. We want to show that when 6 = 01 for some 0 ∈ '()), 1 ∈ � ()), then 26 = 2G

is some constant, and 26 = 0 otherwise. For 0 ∈ '()), 1 ∈ � ()),

0 · G · f(1)1 =
∑
6

f(1)26061 = G

In other words, 2061 = f(1)26. Or, 201 = f(1)21, where 21 = 2G will be our desired constant. If 6 is not of
the form 01, let* = 6) . By Lemma 6.28, there is a transpositon C ∈ '()) ∩� (*) = '()) ∩ 6� ())6−1. Let
0 = C, and 1 = 6−1C6, so f(1) = f(C) = −1, and

f(C)26 = 2061 = 2C66−1C6 = 26,

so 26 = 0.

Corollary 6.30. ℎ())2 = `) ℎ()) for some `) ∈ Z.
Proof. It is easy to check that ℎ())2 satisfies condition (c) of the previous lemma. It is not so easy to check
that `) is an integer, and we will not need it for our purposes, so we will simply state this useful fact.

We are finally ready to prove that the left ideals ℎ()) generated by the Young diagrams are pairwise
nonisomorphic simple modules of C(=.

Theorem 6.31. Let _ be a Young diagram, and ) a corresponding Young tableau.

(1) The left ideal ! ()) = C(=ℎ()) is a simple C(=-module.

(2) If ` is a Young diagram different from _ and * a corresponding Young tableau, then ! ()) and ! (*)
are nonisomorphic.

Proof. (1) Suppose ! ≤ ! ()) is a C(=-submodule, i.e. a left ideal of C(=. For any G ∈ C(=, ℎ())Gℎ())
satisfies part (c) of Corollary 6.29, so ℎ())! ()) ≤ Cℎ()). Then,

ℎ())! ≤ ℎ())! ()) ≤ Cℎ()).

Cℎ()) is a one-dimensional vector space over C, so either ℎ())! = 0 or ℎ())! = Cℎ()). In the first case,

!2 ≤ ! ())! = C(= · ℎ())! = 0.

However, it is easy to check that this implies ! = 0. In the second case,

! ()) = (C(=)Cℎ()) = C(=ℎ())! ≤ !.

so ! = ! ()).
(2) If ! ()) and ! (*) are isomorphic as C(=-modules, then their annihilators are equal. However, for

G =
∑
6 26 · 6 ∈ C(=,

ℎ(*)Gℎ()) =
∑
6

26
(
ℎ(*)6ℎ())

)
=

∑
6

266
(
ℎ(6−1*)ℎ())

)
= 0.

By (a) of Lemma 6.28, ℎ(6−1*)ℎ()) = 0 for all 6 ∈ (=. This shows that ℎ(*) · ! ()) = 0, but ℎ(*) · ! (*) =
Cℎ(*) is nonzero, so the modules are not isomorphic.
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6.6 (* (2) and ($ (3)

To warm up for the next section, we will study the (infinite) groups (* (2) and ($ (3), and their
representations.

Definition 6.32. The 3-dimensional special orthogonal group ($ (3) is the 3-dimensional rotation group,
given by

($ (3) =
{
- ∈ �! (3,R) : --) = 1, det(-) = 1

}
.

Each matrix of ($ (3) is a rotation of R3 about a line through the origin. In particular, each matrix of
($ (3) is uniquely identified by the pair of antipodal points {%,−%} where its axis intersects the unit sphere,
and the angle of rotation it induces in each plane orthogonal to the axis.

We may define the 3-dimensional orthogonal group,

$ (3) =
{
- ∈ �! (3,R) : --) = 1

}
.

In particular, for - ∈ $ (3), det(-) = ±1, so ($ (3) is a normal subgroup of index 2 in $ (3). As a subset
of R3×3, $ (3) inherits the subspace topology, making it a compact set. It has two connected components –
($ (3) and −($ (3). Before we get into representation theory, let us classify the finite subgroups of ($ (3).

Finite subgroups of ($ (3)

Let � ≤ ($ (3) be a nontrivial finite subgroup, so it contains rotations with only finitely many axes. Let
%1, . . . , %= be the points where they intersect the sphere. � induces an action on the points of the sphere,
and each stabilizer �%8 is a finite cyclic group of some order =8 . Assume without loss of generality that �
induces : orbits on $, and that %1, . . . , %: are the representatives of these : orbits. Of course, each point in
the orbit of %8 has the same order of stabilizer, and the number of points in the orbit is |� |/=8 . Further, every
nonidentity element of � fixes exactly 2 points, and

∑
6∈� |fix(6) | = ∑:

8=1 =8 . Removing the identity of �
from both sides of the equation,

2( |� | − 1) =
:∑
8=1
(=8 − 1)

=

:∑
8=1

(
|� | − |� |

=8

)
=⇒ 2 − 2

|� | =
:∑
8=1

(
1 − 1

=8

)
.

Recall that |� | > 1 and =8 > 1 for each 8 = 1, . . . , : . The left-hand side then takes values in the interval
[1, 2), while each term on the right is at least 1/2, so : ∈ {2, 3}. If : = 2, then =1 = =2 = |� |, so� is a cyclic
group generated by a rotation of order =. This is the rotational symmetry group of a regular =-gon. If : = 3,
suppose =1 ≤ =2 ≤ =3. For the right-hand side to lie in [1, 2), we must have =1 = 2, and =2 ∈ {2, 3}. If =2 = 2,
then =3 = |� |/2. In other words, � has an element of order 2 that maps a point % to −% (corresponding to
=3), while =1 and =2 correspond to antipodal points %1 and −%1 so that � has a rotation of order |� |/2 about
the corresponding axis. This is all a complicated way to say that � is a dihedral group �=3 .
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Wewill not go into too much detail for the remaining three cases. If (=1, =2, =3) = (2, 3, 3), then |� | = 12,
and the three orbits have sizes 4, 4, and 6. One of the orbits of size 4 can be chosen as the vertices of a
regular tetrahedron, so that � � �4, its orientation-preserving symmetry group. If (=1, =2, =3) = (2, 3, 4),
then |� | = 24, and the three orbits have sizes 6, 8, and 12. The orbit of size 8 can be chosen as the vertices
of a cube, so that � � (4, its orientation-preserving symmetry group. Finally, if (=1, =2, =3) = (2, 3, 5), then
|� | = 60, and the three orbits have sizes 12, 20, and 30. The orbit of size 20 can be chosen as the vertices of
a regular dodecahedron, so that � � �5, its orientation-preserving symmetry group.

(* (2) and its representations

It is now time to define (* (2), the special unitary group. This is a complex matrix group:

(* (2) =
{
� ∈ �! (2,C) : ��∗ = 1

}
.

where �∗ denotes the adjoint of �. It is easy to check that � ∈ (* (2) if and only if it is of the form

� =

[
U −V
V U

]
: |U |2 + |V |2 = 1.

First, wewill define a homomorphismof (* (2) onto ($ (3) by defining an action of (* (2) on a 3-dimensional
real vector space. Define

+ =

{ [
G H + 8I

H − 8I −G

]
: G, H, I ∈ R

}
.

Alternatively, + is characterised by

+ =

{
- ∈ �! (2,C) : -∗ = -,Tr(-) = 0

}
.

Let (* (2) act on + by
� : - → �∗-�; � ∈ (* (2), - ∈ +.

Clearly, Tr(�∗-�) = 0, and (�∗-�)∗ = �∗-�, so this is a well-defined action. Consider the image of (* (2)
in �! (3,R) under this homomorphism. Since the action preserves the determinant of matrices in + , i.e. the
length of vectors in R3, this image is contained in $ (3). The image is connected and contains the identity
matrix, hence is ($ (3).

Now, any representation of (* (2) induces a representation of ($ (3) under this homomorphism, so
we will study the irreducible representations of (* (2). Let = ∈ N, and let += be the C-vector space of
homogenous polynomials of degree =, with basis -=, -=−1., . . . , -.=−1, .=. Define an action of (* (2) on
+= by

� 5

( [
-

.

] )
= 5

(
�∗

[
-

.

] )
: � ∈ (* (2), 5 ∈ +=.

It is not difficult, but tedious, to check that this is a well-defined representation of (* (2). It remains to show
that this is irreducible. Suppose * ≤ += is an invariant subspace for (* (2); in particular, it is an invariant
subspace for the diagonal matrices of (* (2). Any diagonal matrix with entries (48 \ , 4−8 \ ) is mapped to the
diagonal matrix (4−=8\ , . . . , 4=8\ ). These matrices have an orthonormal basis of eigenvectors in +=, so * is
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a direct sum of these eigenvectors. However, any matrix in (* (2) which is mapped to a matrix with only
nonzero entries will not leave* invariant. Given the action of (* (2) on+=, it is not hard to believe that such
a matrix exists.

7 Infinite groups

7.1 Burnside groups

The Burnside problemwas originally posed byWilliam Burnside in 1902: is a finitely generated group in
which every element has finite order necessarily a finite group? It is easy to conceive of an infinite group in
which every element has finite order – for example, the quasicyclic group�∞? , but this is not finitely generated.
It is not so easy to conceive of a finitely generated such infinite group, so we will see a construction of one.32

An infinite 2-generated ?-group

The idea is to define the ?-measure of a group, show that every group of nonnegative ?-measure has
a proper subgroup of nonnegative ?-measure, and then construct a group of positive ?-measure. Since we
inductively obtain an infinite chain of subgroups with nonnegative ?-measure, this group is infinite.

Fix a group � and a prime ?. Define the ?-height of an element 6 ∈ � by

ℎC? (6) = sup{?: : G?
:

= 6 for some G ∈ �}.

Definition 7.1. Let � = 〈G0, . . . , G= | F8 : 8 ∈ �〉 be a presentation of �. Define the ?-measure of the
presentation

<? (G0, . . . , G= | F8) = = −
∑
8∈�

1
ℎC? (F8)

.

For example,
�4 = 〈G0, G1 | G4

0, G
2
1, (G0G1)2〉.

and
<2〈G0, G1〉 = 1 − 1/4 − 1/2 − 1/2 = −1/4.

Lemma 7.2. If the ?-measure of a presentation of � is nonnegative, then � contains a normal subgroup of
index ?.

Proof. Let � = 〈G0, . . . , G= | F8 : 8 ∈ �〉 be a presentation of � with nonnegative ?-measure. Let � =

〈G0, . . . , G=〉 be a free group, and # = 〈F8 : 8 ∈ �〉 a normal subgroup, so that � = �/# . We want to find
a proper subgroup � of �, # ≤ � C �, so that |� : � | = ?. Choose " C � so that �/" is a maximal
elementary abelian ?-group, so |�/" | = ?=+1. For each F8 ∈ # , if F8 ∉ " , then F8 has no ?th root in �,
i.e. ℎC? (F8) = 1. Since the ?-measure of the presentation is nonnegative, this holds for at most = F8’s.

=⇒ |"# : " | ≤ ?= =⇒ "# ≠ �.

32The answer to the Burnside problem is no.
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Let � be a maximal subgroup of � containing "# . Since �/" is abelian, � C �, and since � is maximal,
|� : � | = ?. That is, ����# : ��#

�� = |� : � | = ?.

Next step: to find a suitable presentation for �/# that has nonnegative ?-measure. In general, if � is a
group and 6 ∈ �, let 6� denote the conjugates of 6 in �.

Lemma 7.3. For each F8 ∈ # ,

(a) if �� (F8) � �, then F�8 = F�
8
, and

(b) if �� (F8) ≤ �, there is some U ∈ � such that

� =

?−1⋃
9=0
U 9�, and F�8 =

?−1⋃
9=0
(U− 9F8U 9)� .

Proof. The inclusion F�
8
≤ F�

8
is clear. In case (a), �� (F8)� = � by the maximality of �, so every 5 ∈ �

can be expressed as 5 = 2 · ℎ for 2 ∈ �� (F8) and ℎ ∈ �. Thus,

5 −1F8 5 = ℎ
−1(2−1F82)ℎ = ℎ−1F8ℎ ∈ F�8 ,

so F�
8
= F�

8
.

In case (b), choose U so that � =
⋃?−1
9=0 U

9�. For 0 ≤ ;, : ≤ ?−1, if U−;F8U; and U−:F8U: are conjugate
in �, then U:−; ∈ �� (F8) ≤ �, so : = ;. In other words, every element of � can be uniquely written as U 9ℎ
for 0 ≤ 9 ≤ ? − 1, and ℎ ∈ �, so the result follows.

Lemma 7.4. ℎC? (F8;�) = ℎC? (F8; �) or ℎC? (F8; �)/?.

Proof. The inequality ℎC? (F8;�) ≤ ℎC? (F8; �) is clear. Suppose F8 has a ?: th root D in �; then D? ∈ �,
so ℎC? (F8;�) ≥ ℎC? (F8; �)/?. In particular, every root of F8 commutes with F8 , so if �� (F8) ≤ �, then
ℎC? (F8;�) = ℎC? (F8; �).

Corollary 7.5. �/# has nonnegative ?-measure.

Proof. By Nielsen-Schreier, �/# has rank (= + 1 − 1) |� : � | + 1 = =? + 1. We can define a presentation of
�/# with the relations

{F8 : �� (F8) � �}
⋃
{U− 9F8U 9 : �� (F8) ≤ �, 0 ≤ 9 ≤ ? − 1}.

The ?-measure of this presentation is given by

<? = =? −
∑
8

1
ℎC? (F8;�)

= =? − ?
∑

�� (F8) ≤�

1
ℎC? (F8; �)

−
∑

�� (F8)��

1
ℎC? (F8; �)

≥ =? − ?
( ∑
�� (F8) ≤�

1
ℎC? (F8; �)

+
∑

�� (F8)��

1
ℎC? (F8; �)

)
= ? · <? (�/#).
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As argued earlier, by constructing an infinite chain of nonempty proper subgroups with nonnegative
?-measure, we it follows that

Theorem 7.6 (Schlage-Puchta). Any group with nonnegative ?-measure is infinite.

It only remains to actually construct such a group. Let � be the free group on 2 generators; � = 〈G0, G1〉 =
{F8 : 8 ∈ N}. Define

� = 〈G0, G1 | F?
8

8
, 8 ∈ N〉.

Clearly, � is a 2-generated ?-group, and the ?-measure of the presentation is

1 −
∑
8≥1

1
ℎC? (F8)

≥ 1 −
∑
8≥1

1
?8
=
? − 2
? − 1

> 0.

The bounded Burnside problem

Of course, this construction feels a little like cheating; this group has elements of arbitrarily large order.
Define the exponent of a group � to be the least positive number = such that 6= = 1 for all 6 ∈ � (this may
be infinite). Now we pose the bounded Burnside problem: is a finitely generated group with finite exponent
necessarily a finite group?

We may reduce this to a simpler problem. If �A denotes the free group of rank A , then any A-generated
group with exponent = is isomorphic to a subgroup of �A/�=A . Define the Burnside group �(A, =) = �A/�=A ,
so it suffices to ask whether �(A, =) is finite. We can immediately make the following observations.

• �(A, 1) = {1}.

• �(1, =) = Z=, the cyclic group of order =.

• �(A, 2) = ⊕A
8=1Z2. Since every element has order 2, every commutator GHG−1H−1 = (GH)2 = 1, so

�(A, 2) is abelian and we apply the fundamental theorem of finitely generated abelian groups.

In general, �(A, 3), �(A, 4), and �(A, 6) are known to be finite, while �(2, 5) remains unknown. The best
known result for infinite Burnside groups is that �(A, =) is infinite for all A > 1 and = ≥ 8000. The finiteness
of �(A, 3) and �(A, 4) can be proven by elementary but convoluted calculations, so let us see what they are.

Theorem 7.7. �(A, 3) is finite.

Proof. We proceed by induction, as �(1, 3) = Z3. Let � = �(A − 1, 3), � = �(A, 3), and choose 0 ∈ � so
that � = 〈�, 0〉. By induction, � is finite, and every 6 ∈ � can be written as some product

ℎ00
n1ℎ10

n2 . . . 0 n<ℎ< : n8 ∈ {±1}, ℎ8 ∈ �.

Further,
(0ℎ)3 = 1 =⇒ 0ℎ0 = ℎ−10−1ℎ−1.
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Whenever n8 = n8+1, we may use this identity to reduce the number of 0’s in our expression. Further, writing
0−1 = 02, we may reduce this further to obtain an expression of the form

ℎ00ℎ10
−1ℎ2.

It is clear that there are only finitely many such expressions, so � is finite. We remark that |�(A, 3) | =
3A+(A2)+(A3) .

The proof that �(A, 4) is finite involves a similar manipulation of identities, only we do so in a lemma.

Lemma 7.8. If � has exponent 4, and � = 〈�, 0〉 where � is finite and 02 ∈ �, then � is finite.

Note that this implies

Theorem 7.9. �(A, 4) is finite.

as we inductively apply the lemma to 〈G1〉 ≤ 〈G1, G
2
2〉 ≤ 〈G1, G2〉 . . . .

Proof. Again, since 02 ∈ �, every element of � can be written as

ℎ00ℎ10 . . . 0ℎ< : ℎ8 ∈ �.

And,
(0ℎ)4 = 1 =⇒ 0ℎ0 = ℎ−10(02ℎ−102)0ℎ−1

so we may replace each term 0ℎ80 by this identity. In particular, we would like ℎ−1
8−1 = ℎ8 so we may reduce

the length of the expression. Consider the expressions obtained by repeated substitution of the identity:

ℎ00ℎ10ℎ20ℎ30 . . .

ℎ00ℎ1ℎ
−1
2 0(ℎ′2)0ℎ

−1
2 ℎ3 . . .

ℎ00ℎ1ℎ
−1
2 ℎ−1

3 . . .

If none of these reduce to the identity and < > |� |, then two of the beginning strings must be equal. As a
result, ℎ−1

8−1 = ℎ8 for some 8. We can reduce this to an expression with < |� | terms, so � is finite.

7.2 Divisible groups

Definition 7.10. � is a divisible group if for every 6 ∈ � and = ∈ N, there exists D ∈ � such that D= = 6.

For example, Q under addition is a divisible group. Using a construction involving direct limits and
wreath products, we will show that

Theorem 7.11. Every group can be embedded in a divisible group.
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Direct limits

What is a direct limit? First, we say (�, �) is a directed set if � is a partial order on �, and for any 8, 9 ∈ �
there is some : ∈ � such that 8 � : and 9 � : . That is, any two elements of � have a common upper bound.
A directed system of groups is a collection of groups (�8 : 8 ∈ �) indexed by a directed set � with group
homomorphisms ( 58 9 : 8 � 9 ∈ �) such that

(i) 588 is the identity, and

(ii) 58: = 5 9: ◦ 58 9 for all 8 � 9 � : .

Define an equivalence relation ∼ on the disjoint union � = ⊔
8∈� �8 by G8 ∼ G 9 for G8 ∈ �8 and G 9 ∈ � 9 if for

some : � 8, 9 , 58: (G8) = 5 9: (G 9). Intuitively, two elements are equivalent if they are “equal” at some point.
Define the direct limit lim−−→ �8 as �/∼. This induces maps q8 : �8 → lim−−→ �8 by sending each element to its
equivalence class, and the group operation is defined on lim−−→ �8 so that the maps q8 are homomorphisms.

For example, given equivalence classes [G8], [G 9] ∈ lim−−→ �8 for G8 ∈ �8 and G 9 ∈ � 9 , choose : � 8, 9 and
define [G8] [G 9] = [ 58: (G8) 5 9: (G 9)]; any two elements will eventually lie in the same group �: . The simplest
example of a direct limit of groups is when the �8 are an increasing chain of groups, i.e. � is totally ordered,
�8 ⊂ � 9 for 8 � 9 , and the direct limit is just the union

⋃
8∈� �8 . A less simple example is the quasicyclic

group �∞? . For 8 ≤ 9 ∈ N, define the homomorphism 58 9 : Z?8 → Z? 9 as multiplication by ? 9−8 . This yields
a directed system {0} → Z? → Z?2 → . . . whose direct limit is �∞? . A more intuitive approach is to think
of these as the inclusion maps of the ?8th roots of unity in the ? 9 th roots of unity.

Proof of Theorem 7.11. For any group �, consider the wreath product � o�< =
∏<
8=1 � o�<. � embeds in

this as the diagonal subgroup
∏<
8=1 � o {1}. Let C be a generator of �<, and (ℎ, ℎ, . . . , ℎ; 1) ∈ ∏<

8=1 � o {1}.
Then, (ℎ, 1, . . . , 1; C)< = (ℎ, ℎ, . . . , ℎ; 1).

Now, let 0< be the product of the first < primes. Define �0 = �, and recursively �< = �<−1 o �0< .
�<−1 has a canonical embedding in �<, so these form a directed system of groups whose direct limit is a
divisible group.

Divisible abelian groups

We do not have to work so hard to embed every abelian group in a divisible group. A free abelian
group with basis a set � is defined as

⊕
� Z. Equivalently, this is the quotient � (�)/� (�) ′ where � (�) ′ is the

commutator subgroup of the free group with base �.

Theorem 7.12. Every abelian group can be embedded in a divisible group.

Proof. We need two observations: (1) quotients and direct sums of divisible groups are divisible, and (2)
every abelian group is the quotient of a free abelian group. Given an abelian group �, we have a set of
relations ' such that

� � ⊕�Z�' ≤ ⊕�Q�'
and the right-hand side is a divisible group.

While Q is a torsion-free divisible abelian group, the groups �∞? are torsion divisible abelian groups,
and these are essentially the only examples.
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Theorem 7.13. Every divisible abelian group is a direct sum of some quasicyclic groups and Q, i.e. if � is
a divisible abelian group, then

� �
⊕
(�?)?

C∞?
⊕
�

Q.

The proof of the theorem is easy once we are able to reduce to the case when � contains no nontrivial
direct summands.

Lemma 7.14. If � is a divisible subgroup of an abelian group �, then there exists � ≤ � such that
� = � ⊕ � .

Proof. We write � additively. First, apply Zorn’s lemma to the poset{
� ≤ � : � ∩ � = {0}

}
and obtain a maximal subgroup � ≤ � which is “disjoint” from �. We claim that � ⊕ � = �. If not, choose
a nonzero element 0 + (� ⊕ �) ∈ �/(� ⊕ �). By the maximality of � , there exists a least positive integer =
such that

= · 0 + 4 = 3; 4 ∈ �, 3 ∈ �.

Letting D ∈ � be an =th root for 3, =(0−D) = � . Since 0 ∉ � ⊕ � , 0−D ∉ � , so � + 〈0−D〉 strictly contains
� . However, if it intersects � nontrivially, since =(0 − D) ∈ � , there exists a positive integer < < = such that
<(0 − D) ∈ � ⊕ � , so <0 ∈ � ⊕ � , contradicting the minimality of =.

It is even easier to see that any direct summand of a divisible abelian group is divisible. All that remains
is to show that any direct summand-free divisible abelian group is either (1) torsion, or (2) torsion-free, and
then construct appropriate isomorphisms to �∞? or Q.
Exercise 48. Do that.

7.3 Infinite abelian groups

Thanks to the fundamental theorem of finitely generated abelian groups, we know almost all there is
to know about their structure. Infinitely generated abelian groups tend not to be as well-behaved, but if we
impose some finite structure locally, we can better understand them.

Locally cyclic groups

Definition 7.15. � is a locally cyclic group if every finitely generated subgroup is cyclic.

It is easy to check that every subgroup and quotient group of a locally cyclic group is locally cyclic.
Some nontrivial examples of locally cyclic groups are the quasicyclic groups �∞? , and the additive group Q.

Proposition 7.16. Every locally cyclic group is abelian.

More generally – and we will not prove this – every locally cyclic group is a subquotient of Q, i.e. a
quotient of a subgroup of Q.

A useful tool for studying local properties of groups is the subgroup lattice, which we introduced in
subsection 3.5. Locally cyclic groups can be classified by their subgroup lattices. Given a lattice, denote by
- ∨ . the join of - and . , and by - ∧ . their meet.
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Definition 7.17. A lattice is said to be distributive if one of the following (equivalent) conditions holds.

(1) For all -,., / , - ∧ (. ∨ /) = (- ∧ . ) ∨ (- ∨ /).

(2) For all -,., / , (- ∧ . ) ∨ (. ∧ /) ∨ (- ∧ /) = (- ∨ . ) ∧ (. ∨ /) ∧ (- ∨ /).

Theorem 7.18 (Ore). � is locally cyclic if and only if its subgroup lattice is distributive.

Proof. Suppose� is locally cyclic. We will show that� satisfies (1). Clearly, - ∧. and - ∧ / are contained
in -∧(.∨/), so (-∧. )∨(-∨/) ≤ -∧(.∨/). For the reverse inclusion, let G ∈ -∧(.∨/). G is generated
by finite subgroups .1 ≤ . and /1 ≤ / , and these generate a cyclic group, so G ∈ (- ∧ .1) ∨ (- ∧ /1) ≤
(- ∧ . ) ∨ (- ∧ /).

For the converse, we will first show that � is abelian. Let - = 〈G〉, . = 〈H〉, and / = 〈GH〉. Then, since
� satisfies (2),

〈G, H〉 ∩ 〈G, GH〉 ∩ 〈H, GH〉 = 〈G, H〉
=⇒ 〈G ∩ H, G ∩ GH, H ∩ GH〉 = 〈G, H〉.

The group on the left-hand side is a subgroup of 〈GH〉, so G and H must commute. If � is not locally cyclic,
some definition-chasing tells us that there are subgroups � ≤ � ≤ � such that �/� � Z? × Z? for some
prime ?, and this induces a sublattice of � which is not distributive.

The minimum condition

Now we consider infinite abelian groups where ascending or descending chains of subgroups can only
be finite.

Definition 7.19. A group � satisfies the maximum condition if every ascending chain of subgroups �1 ≤
�2 ≤ . . . eventually terminates. That is, there exists # ∈ N such that for all = ≥ # , �= = �# .

It is easy to see that an infinitely generated group cannot satisfy the maximum condition, and conversely,
since we know what the finitely generated abelian groups are,

Theorem 7.20. An abelian group � satisfies the maximum condition if and only if it is finitely generated.

A more interesting property to study for abelian groups is the minimum condition.

Definition 7.21. A group � satisfies the minimum condition if every descending chain of subgroups �1 ≥
�2 ≥ . . . eventually terminates.

Now, a characterisation is not so clear. For example, even Z does not satisfy the minimum condition.
This leads to the easy observation

Lemma 7.22. If � satisfies the minimum condition, every element of � has finite order.

We will need one more lemma about the torsion-part of an abelian group. Let � be an abelian group,
and ) ≤ � the subgroup of all elements of � of finite order. For each prime ?, let )? ≤ ) be the subgroup
of all elements with order a power of ?. We call ) the torsion-part of �, and )? the ?-torsion.
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Lemma 7.23.
) �

⊕
?

)? .

Vigyázz. When � is not abelian, this need not hold. In fact, ) need not even be a subgroup of �.

Theorem 7.24. An abelian group � satisfies the minimum condition if and only if it is a finite direct sum of
quasicyclic groups and finite cyclic groups.

Proof. If suffices to consider the case when � is an infinite ?-group for some prime ?. Let � be a minimal
infinite subgroup of� by the minimum condition. Since � is a ?-group, for every < coprime to ?, <� = �.
If ?� = �, then � is divisible, so � � �∞? . Otherwise, as a proper subgroup of �, ?� is finite. Then �?,
the set of elements in � of order ?, is infinite. But this is an infinite-dimensional vector space over F?, hence
cannot satisfy the minimum condition.

Finally, it is clear that any group which satisfies the minimum condition cannot contain an infinite direct
sum of subgroups.

7.4 Free abelian groups

Recall the definition of a free abelian group with base � as
⊕

� Z. We call |� | the rank of the group.

Theorem 7.25. Every subgroup of
⊕

� Z is free of rank at most |� |.

Proof. Let � =
⊕

� Z and take a well-ordering � of �. For G ∈ �, define its leading term ; (G) as follows.
If G = =111 + . . . =:1: , for 11, . . . , 1: ∈ � and =1, . . . , =: ∈ Z \ {0}, assume without loss of generality that
11 � · · · � 1: , and define ; (G) = =:1: . Let - be a subgroup of �. For each 1 ∈ �, define

-1 =

{
= ∈ Z \ {0} : for some G ∈ -, ; (G) = =

}
∪

{
0
}
.

Each -1 is a subgroup of Z, so -1 = 〈=1〉 for some =1 ∈ Z. Choose a representative G1 ∈ - such that
; (G1) = =1. We claim that

{
G1 : 1 ∈ �

}
is a free generating set for - .

Clearly, the terms G1 are independent over Z; no nontrivial finite linear combination =1G11 + · · · + =:G1:
is equal to 0. Suppose the set

( =

{
G ∈ - : G ∉

⊕
1∈�

ZG1

}
is nonempty. Choose G ∈ ( whose leading term is �-minimal. Write G as G = H + = · 1, where ; (G) = = · 1.
Since 〈=1〉 = -1, we have that =1 divides =. The element G − =

=1
· G1 then yields a smaller counterexample,

a contradiction.
Finally, it is clear that

���{G1}��� ≤ |� |.
The Baer-Specker group

What about infinite direct products? For example, given any set �, consider the direct product
∏
� Z2. This

has a natural structure as a Z2-vector space, so there exists a basis � ⊂ ∏
� Z2 such that

∏
� Z2 =

⊕
� Z2.

That is, every direct product of Z2 is isomorphic to a direct sum. Does the same hold for Z?
Of course, every finite direct product is a finite direct sum. Since every subgroup of a free abelian group

is free, it suffices to consider
∏
� Z when � is countable. Call � =

∏
� Z the Baer-Specker group.
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Theorem 7.26. Hom(�,Z) is a free abelian group generated by the projections.

Proof. For each 8 ∈ �, we have the projection c8 : � → Z that sends (0 9) 9∈� → 08 . Let 48 ∈ � be the
sequence such that 48 (8) = 1 and 48 ( 9) = 0 for all 9 ≠ 8.

Step (1). There is no q ∈ Hom(�,Z) such that q(48) ≠ 0 for all 8 ∈ �.

Suppose such a q exists. Choose a sequence (0=)=∈N ⊂ Z \ {0} such that 0=−1 divides 0=, and 0= >
2
∑
8<= 08q(48). Then, for each # ∈ N,

q

(
(0=)

)
=

∑
=<#

0=q(4=) + 0# · q
(
(1=)=≥#

)
for some nonzero sequence (1=). So, for each # ∈ N���q(

(0=)
)��� > ���0# /2���

but this is not possible.

Step (2). There is no q ∈ Hom(�,Z) which is nonzero for infinitely many 48 .

Let ( = {48 : q(48) ≠ 0}. If |( | = |� |, any bijection 5 : � → ( induces a homomorphism � → �. Then,
q ◦ 5 ∈ Hom(�,Z) is nonzero for all 48 , contradicting step 1.

Step (3). If q(48) = 0 for all 8, then q = 0.

Let (0=)=∈N ∈ � be arbitrary. For each =, there exist G=, H= ∈ Z such that 0= = 2=G= + 3=H=. Then,

q

(
(2=G=)

)
= 2# q

(
(G=)=≥#

)
for any # ∈ N, so q

(
(2=G=)

)
= 0. Similarly, q

(
(3=H=)

)
= 0, so q

(
(0=)

)
= 0

Putting this all together,

Step (4). The projections form a basis for Hom(�,Z).

Corollary 7.27. The Baer-Specker group is not free.

Proof. Some set theory tells us that |�| is uncountable. Suppose � �
⊕

( Z for some set (. If ( is countable,
then

⊕
( Z is countable, so this is not possible. If ( is uncountable, then for each B ∈ (, we have a projection

cB :
⊕

( Z→ Z. So, Hom(
⊕

( Z,Z) is uncountable, but Hom(�,Z) is countable, again a contradiction.
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Fundamental theorem of finitely generated

abelian groups, 6
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irreducible representation, 50
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M-group, 66
Maschke’s theorem, 50
maximum condition, 83

minimum condition, 83

nilpotent group, 26
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Notation
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� ≤ �, 2
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∏
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/ (�), 7
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orbit of a group action, 8
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permutation group, 8
polytabloid, Specht module, 72
primitive character, 66
primitive permutation group, 37

quotient group, 5

regular action, 9
regular representation, 49
representation of a group, 49
residually finite group, 13

semi-regular action, 9
semidirect product, 20
semisimple module, 52
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simple group, 6
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solvable group, 29
stabilizer of a group action, 8
standard representation of (=, 72
subdirect product, 40
subgroup lattice, 35
supersolvable group, 34
Sylow ?-subgroup, 10
symmetric and alternating characters, 67

tabloid, 71

torsion, torsion-free, 3
torsion-part, ?-torsion, 83
transitive action, 9
transvection, 16
transversal, 11
trivial representatin, 49
twisted wreath product, 45

upper central series, 26

wreath product, 43

Young diagram, Young tableau, 71
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