
Polynomial methods in combinatorics
Narmada

Mathcamp 2023

Day 1 problems

A guide to doing homework
Each homework problem falls into one of these four categories:

1. required: These are problems that I expect you to work on. Typically, there will be time in class to work on
these.

2. recommended: These are problems whose statements you should be familiar with. They are helpful to work
on if you need more practice with the material.

3. optional: These are problems that are related to the material we will cover, but that you do not need to work
on! It’s fine if you don’t even read them.

4. bonus: These are problems that are only tangentially related to the material in class, but I think they are fun
to think about. Like optional problems, they are completely optional.

A refresher on today’s results
Remember that in this class, a field F is always R, C, or F𝑝, where 𝑝 is a prime.

Lemma 1 (The set vanishing lemma). If 𝑆 ⊂ F𝑛 has size at most
(𝑑+𝑛
𝑛

)
, there is a polynomial of degree 𝑑 in

F[𝑋1, . . . , 𝑋𝑛] that vanishes on 𝑆.

Lemma 2 (The univariate lemma). A polynomial of degree 𝐷 in F[𝑋] has at most 𝐷 roots.

Lemma 3 (Vanishing lemma). If a polynomial of degree 𝐷 in F[𝑋1, . . . , 𝑋𝑛] vanishes at 𝐷 + 1 points on a line in
F𝑛, then it vanishes at all points on that line.

Applications of the lemmas in R𝑛

1. (required) Show that there is a 2-variable polynomial of degree ≤ 2000 that vanishes on a given set of 1
million points in R2.

2. (required) Show that for any 𝑘 points in R𝑛, there is a polynomial of degree at most ∼ ·𝑘1/𝑛 vanishing at all
𝑘 points.

3. (optional) Show that for any 𝑘 lines in R3, there is a polynomial of degree at most ∼ 𝑘1/2 that vanishes on
all 𝑘 lines.
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The joints problem in R3

Let L be a set of lines in R3. A point 𝑝 in R3 is called a joint if 𝑝 is the intersection points of 3 lines of 𝐿 that
do not all lie in the same plane. (If you know linear algebra, the three lines that meet at 𝑝 are linearly independent.)
What is the maximum number of joints you can form from 𝑁 lines?

1. (required) Let L be a collection of 𝑁 lines, and let J be the set of joints. Fix 𝛿 =
|J |
2|L| . If a line in L has

fewer than 𝛿 joints on it, throw it away. Repeat this process until we have some set L′ ⊂ L so that every line
in L′ has at least 𝛿 joints on it. Let J ′ be the new set of joints. Show that |𝐽′| ≥ |J |

2 and that L′ is nonempty,
i.e. we could not have thrown away all lines of L.

2. (required) Let 𝑔(𝑋,𝑌, 𝑍) be a nonzero polynomial of minimal degree vanishing on J ′. Show that the degree
of 𝑔 is at most 3√6 · |J ′|1/3.

3. (required) Show that 𝑔 must vanish on every line in L′.

4. (required) The gradient of 𝑔 is a polynomial defined by taking the derivative of 𝑔 in each coordinate, i.e.

∇𝑔 =

( 𝑑
𝑑𝑥
𝑔,
𝑑

𝑑𝑦
𝑔,
𝑑

𝑑𝑧
𝑔

)
.

A fact from linear algebra tells us that since 𝑔 vanishes on three linearly independent lines, ∇𝑔 also vanishes
on those lines. Use this fact to find a contradiction!

The geometry of finite fields

5. (recommended) Draw all lines through the origin in
(
F2

)2,
(
𝐹3

)2, and
(
F4

)2.

6. (optional) Try to visualize or draw
(
F2

)3. Can you draw a plane in this space?

7. (bonus) Can you think of the points of
(
F2

)𝑛 as a shape in R𝑛?

The finite field Nikodym problem
You will need an extra lemma:

Lemma 4 (The zero lemma for F𝑝). Suppose 𝑓 ∈ F𝑝 [𝑋1, . . . , 𝑋𝑛] has degree at most 𝑝 − 1. If 𝑓 vanishes at every
point in

(
F𝑝

)𝑛, then 𝑓 is the zero polynomial.

A set 𝑁 is a Nikdoym set in
(
F𝑝

)𝑛 if for every 𝑥 ∉ 𝑁 , there is a line 𝑙 through 𝑥 such that 𝑙 \ {𝑥} ⊂ 𝑁 .

1. (optional) Find a Nikodym set in
(
F2

)2.

2. (recommended) Show that if 𝑁 is a Nikodym set in
(
F𝑝

)𝑛, then

|𝑁 | ≥
(
𝑝 − 2 + 𝑛

𝑛

)
.
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Day 2 problems

A guide to doing homework
Each homework problem falls into one of these four categories:

1. required: These are problems that I expect you to work on. Typically, there will be time in class to work on
these.

2. recommended: These are problems whose statements you should be familiar with. They are helpful to work
on if you need more practice with the material.

3. optional: These are problems that are related to the material we will cover, but that you do not need to work
on! It’s fine if you don’t even read them.

4. bonus: These are problems that are only tangentially related to the material in class, but I think they are fun
to think about. Like optional problems, they are completely optional.

Lines in
(
F𝑝

)𝑛
1. (required) How many points are in

(
F𝑝

)𝑛?
2. (required) If 𝑙 is a line in

(
F𝑝

)𝑛, how many points are on 𝑙?

3. (required) For a fixed point 𝑣 ∈
(
F𝑝

)𝑛, how many lines pass through 𝑝?

We can think of lines and directions in
(
F𝑝

)𝑛 like we think of them in R𝑛. For a fixed point 𝑏 ∈
(
F𝑝

)𝑛, a line in
direction 𝑏 is a line of the form {𝑎 + 𝑡𝑏 : 𝑡 ∈ F𝑝} for some fixed 𝑎. Think of 𝑎 as a point on the line, and 𝑏 as the
direction of the line from 𝑎.

The Kakeya conjecture without polynomials

Remember, a set 𝐾 ⊂
(
F𝑝

)𝑛 is called a Kakeya set if 𝐾 contains a line in every direction.

4. (recommended) Pick any line 𝑙 ⊂
(
F𝑝

)𝑛. Show that 𝐾 =
(
F𝑝

)𝑛 \ 𝑙 is a Kakeya set. What is the size of 𝐾?

5. (optional) Let 𝑠 ≤ 𝑝. Show that for any 𝑠 lines 𝑙1, . . . , 𝑙𝑠 in
(
F𝑝

)𝑛, their union contains at least (1/2)𝑝𝑠
points.

6. (optional) Use the previous problem to conclude that a Kakeya set always has size at least (1/2)𝑝2.
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The Kakeya conjecture WITH polynomials

All problems in this section are required. We will show that the size of every Kakeya set in
(
F𝑝

)𝑛 must be at
least ∼ 𝑝𝑛. Suppose for contradiction that 𝐾 is a Kakeya set with

|𝐾 | <
(
𝑝 − 1 + 𝑛

𝑛

)
.

7. (required) Argue that there is a nonzero polynomial 𝑓 ∈ F𝑝 [𝑋1, . . . , 𝑋𝑛] of degree at most 𝑝−1 that vanishes
on 𝐾 .

8. (required) There is nothing for you to solve here, just make sure you understand it: Let 𝐷 be the degree of
𝑓 . Write 𝑓 = 𝑓𝐷 + 𝑔, where every term of 𝑓𝐷 has degree exactly 𝐷, and 𝑔 is a polynomial of degree strictly
less than 𝐷. This is just separating the max degree terms of 𝑓 .

9. (required) If 𝑓 is nonzero, why does 𝑓𝐷 have to be nonzero?

10. (required) For any 𝑏 ∈
(
F𝑝

)𝑛, there is some vector 𝑎 so that the line 𝑎 + 𝑡𝑏 is contained in 𝐾 . Why is the
polynomial 𝑓 restricted to this line a polynomial in one variable?

11. (required) What is the coefficient of 𝑋𝐷 in the restriction of 𝑓 to this line, in terms of 𝑓𝐷 and 𝑔?

12. (required) Show that 𝑓𝐷 (𝑏) = 0.

13. (required) Use this to derive a contradiction!
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Day 3 problems

A guide to doing homework
Each homework problem falls into one of these four categories:

1. required: These are problems that I expect you to work on. Typically, there will be time in class to work on
these.

2. recommended: These are problems whose statements you should be familiar with. They are helpful to work
on if you need more practice with the material.

3. optional: These are problems that are related to the material we will cover, but that you do not need to work
on! It’s fine if you don’t even read them.

4. bonus: These are problems that are only tangentially related to the material in class, but I think they are fun
to think about. Like optional problems, they are completely optional.

The main tool for today is the Schwartz–Zippel lemma.

Lemma 5 (Schwartz–Zippel). Let 𝑆 be a nonempty subset of a field F. For any polynomial 𝑓 ∈ F[𝑋1, . . . , 𝑋𝑛] of
degree at most 𝑑, the number of roots of 𝑓 in the set 𝑆𝑛 ⊂ F𝑛 is at most 𝑑 |𝑆 |𝑛−1.

This has a natural probabilistic formulation.

Lemma 6 (Schwartz–Zippel again). Let 𝑆 be a nonempty subset of a field F, and 𝑓 ∈ F[𝑋1, . . . , 𝑋𝑛] a polynomial
of degree at most 𝑑. If we choose 𝑠1, . . . , 𝑠𝑛 ∈ 𝑆 uniformly at random, the probability that 𝑓 (𝑠1, . . . , 𝑠𝑛) = 0 is at
most 𝑑 |𝑆 |−1.

1. (required) Show that the two forms of the Schwartz–Zippel lemma are equivalent.

2. (recommended) Can you prove the Kakeya conjecture using the Schwartz-Zippel lemma?

Polynomial identity testing
Suppose we have some kind of formula for two polynomials that helps us bound their degree and tells us how

to evaluate them as functions, but doesn’t actually give us their coefficients. How can we efficiently determine if
they are equal?

3. (required) Let 𝑓 , 𝑔 ∈ F[𝑋1, . . . , 𝑋𝑛] be two polynomials of degree at most 𝑑. Use the Schwartz–Zippel
lemma to develop an algorithm that decides if 𝑓 = 𝑔 with error probability ≤ 1/2.

4. (required) Can you modify this algorithm to decide if 𝑓 = 𝑔 with error probability ≤ 1/2𝑚, where 𝑚 is any
integer?

5



Polynomial methods in combinatorics
Narmada

Mathcamp 2023

Multilinear polynomials
The next few problems will help you prove a better bound on the Schwartz–Zippel lemma for multilinear

polynomials. A polynomial 𝑓 ∈ F[𝑋1, . . . , 𝑋𝑛] is multilinear if every variable has degree 1 in every term.
Somewhat informally, there are no exponents that are greater than 1. For example, 𝑋2 − 2𝑋 is not a multilinear
polynomial, but 𝑋𝑌 − 2𝑋 is.

We will focus on multilinear polynomials over F2, so the coefficients can only be 0 or 1. Here is the statement:
if 𝑓 ∈ F2 [𝑋1, . . . , 𝑋𝑛] is a nonzero multilinear polynomial of degree 𝑑, then the probability that 𝑓 evaluates to
zero at a random point in

(
F2

)𝑛 is at most 1 − 2−𝑑 .

5. (recommended) Show that the statement is equivalent to saying that the number of roots of 𝑓 in
(
F2

)𝑛 is at
most 2𝑛 − 2𝑑 .

6. (recommended) We will prove this by induction on 𝑛. Prove the base case 𝑛 = 1.

7. (recommended) For the inductive step, suppose the statement is true for 𝑛 − 1 variables and let 𝑓 be a
nonzero multilinear polynomial in F[𝑋1, . . . , 𝑋𝑛]. Since 𝑓 is nonzero, some variable, say 𝑋1, has to show
up somewhere in 𝑓 . Write 𝑓 = 𝑋1 𝑓1 + 𝑔1 by collecting the terms that are divisible by 𝑋1. Argue that 𝑓1 and
𝑔1 are multilinear.

8. (recommended) If 𝑔1 is the zero polynomial, use the inductive hypothesis to show that 𝑓 has at most 2𝑛 − 2𝑑
roots.

9. (recommended) If 𝑓1 + 𝑔1 is the zero polynomial, show that 𝑓 = (𝑋1 + 1) 𝑓1. Again, use the inductive
hypothesis to show that 𝑓 has at most 2𝑛 − 2𝑑 roots.

10. (recommended) The final case is if 𝑔1 and 𝑓1+𝑔1 are both nonzero polynomials. Argue that ®𝑎 = (𝑎1, . . . , 𝑎𝑛)
is a root of 𝑓 if and only if either 𝑎1 = 0 and 𝑔1( ®𝑎) = 0 OR 𝑎1 = 1 AND ( 𝑓1 + 𝑔1) ( ®𝑎) = 0. Again, use the
inductive hypothesis to show that 𝑓 has at most 2𝑛 − 2𝑑 roots.

11. Profit!

An application involving graphs and matrices
If you know some graph theory, these problems are recommended. If not, they are optional.
A bipartite graph is a graph whose vertex set can be partitioned into two sets 𝐴 and 𝐵, so that the only edges

in the graph are between 𝐴 and 𝐵. A perfect matching in a bipartite graph is a set of edges such that every vertex
of the graph is contained in EXACTLY one edge of the matching.

12. Show that if 𝐺 is a bipartite graph that has a perfect matching, then |𝐴| = |𝐵 |.

Can we guess whether a bipartite graph has a perfect matching? Let 𝐺 be a bipartite graph with |𝐴| = |𝐵| = 𝑛.
The incidence matrix of 𝐺 is the 𝑛 × 𝑛 matrix 𝑀𝐺 defined by

𝑀𝐺 (𝑖, 𝑗) =
{

1, 𝑎𝑖𝑏 𝑗 is an edge;
0, otherwise.
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The rows of 𝑀𝐺 are indexed by the vertices in 𝐴, the columns by the vertices in 𝐵, and an entry is equal to 1 if and
only if the corresponding vertices form an edge. We need one last definition. The determinant of an 𝑛 × 𝑛 matrix
𝑀 can be expressed using the formula

det(𝑀) =
∑︁
𝜎∈𝑆𝑛

𝑛∏
𝑖=1

(−1)sgn(𝜎)𝑀𝑖,𝜎)𝑖) ,

where 𝜎 runs over all permutations of 𝑛 elements and the sign sgn(𝜎) is a technical thing. If you think about the
formula for the 3× 3 determinant, the + and − signs that show up are the signs of the corresponding permutations.

13. Let𝐺 be a bipartite graph with |𝐴| = |𝐵 | = 𝑛. Define the matrix 𝑀 [𝑋] by setting 𝑀𝑖, 𝑗 = 𝑋𝑖, 𝑗 if 𝑀𝐺 (𝑖, 𝑗) = 1,
and to 0 otherwise. This is just replacing all the ones in 𝑀𝐺 with a variable. Show that det(𝑀 [𝑋]) is a
nonzero polynomial if and only if 𝐺 has a perfect matching.

How do we find this perfect matching if det(𝑀 [𝑋]) is actually a nonzero polynomial?

14. Fix an edge 𝑎𝑏 in 𝐺. Change the 𝑎𝑏 entry of 𝑀𝐺 [𝑋] to be equal to 1. Show that the determinant of this new
matrix is a nonzero polynomial if and only if there is a perfect matching containing the edge 𝑎𝑏.
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The proof of Schwartz–Zippel, if you’re interested
Proof. We will prove the probabilistic formulation by induction on 𝑛, the number of variables.

The base case 𝑛 = 1 is equivalent to the Fundamental Theorem of Algebra.
For the inductive case, assume that the theorem is true for (𝑛−1)–variate polynomials. Let 𝑓 ∈ 𝐹 [𝑋1, 𝑋2, . . . , 𝑋𝑛]

be a degree 𝑑 polynomial. We can view 𝑓 as a polynomial with coefficients 𝑓𝑖 ∈ 𝐹 [𝑋2, . . . , 𝑋𝑛];

𝑓 (𝑋1, 𝑋2, . . . , 𝑋𝑛) =
𝑑∑︁
𝑖=0

𝑓𝑖 (𝑋2, . . . , 𝑋𝑛)𝑋 𝑖1. (1)

Then deg 𝑓𝑖 ≤ 𝑑 − 𝑖.
Let 𝑡 be the largest value of 𝑖 such that 𝑋 𝑖1 appears; i.e. 𝑓𝑡 ≠ 0. Then deg 𝑓𝑡 ≤ 𝑑 − 𝑡.
Pick random 𝑠2, . . . , 𝑠𝑚 ∈ 𝑆. Since 𝑓𝑡 is an (𝑚 − 1)-variate polynomial, we have by the induction hypothesis:

P[ 𝑓𝑡 (𝑠2, . . . , 𝑠𝑚) = 0] ≤ 𝑑 − 𝑡
|𝑆 | . (2)

Let 𝐵 be the event that 𝑓 (𝑠2, . . . 𝑠𝑚) = 0, and �̄� the event that 𝑓 (𝑠2, . . . 𝑠𝑚) ≠ 0.
If 𝑓𝑡 (𝑠2, . . . , 𝑠𝑚) ≠ 0, then 𝑓 (𝑋1, 𝑠2, . . . , 𝑠𝑚) has degree 𝑡 (note the variables; we are viewing 𝑓 as a univariate

polynomial with coefficients 𝑓𝑖 (𝑠2, . . . , 𝑠𝑚)).
So:

P[ 𝑓 (𝑠1, 𝑠2, . . . , 𝑠𝑚) = 0 | 𝑓𝑡 (𝑠2, . . . , 𝑠𝑚) ≠ 0] ≤ 𝑡

|𝑆 | , (3)

where the | denotes conditional probability:

𝑃[𝐴 | 𝐵] = 𝑃[𝐴 ∩ 𝐵]
𝑃[𝐵] . (4)

Let 𝐴 be the event that 𝑓 (𝑠1, 𝑠2, . . . , 𝑠𝑚) = 0. For our events 𝐴 and 𝐵,
Then:

nullity

P[ 𝑓 (𝑠1, 𝑠2, . . . , 𝑠𝑚) = 0] = 𝑃[𝐴]
= 𝑃[𝐴 ∩ 𝐵] + 𝑃[𝐴 ∩ �̄�]
= 𝑃[𝐴 | 𝐵]𝑃[𝐵] + 𝑃[𝐴 | �̄�]𝑃[�̄�]
≤ 𝑃[𝐵] + 𝑃[𝐴 | �̄�]

≤ 𝑑 − 𝑡
|𝑆 | + 𝑡

|𝑆 |

=
𝑑

|𝑆 | ,

(5)

as desired (where �̄� denotes the complement of event 𝐵).
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Day 4 problems

A guide to doing homework
Each homework problem falls into one of these four categories:

1. required: These are problems that I expect you to work on. Typically, there will be time in class to work on
these.

2. recommended: These are problems whose statements you should be familiar with. They are helpful to work
on if you need more practice with the material.

3. optional: These are problems that are related to the material we will cover, but that you do not need to work
on! It’s fine if you don’t even read them.

4. bonus: These are problems that are only tangentially related to the material in class, but I think they are fun
to think about. Like optional problems, they are completely optional.

Today’s tool is really a giant hammer: the Combinatorial Nullstellensatz.

Theorem 7 (Combinatorial Nullstellensatz). Suppose 𝑓 ∈ F[𝑋1, · · · , 𝑋𝑛] is a polynomial of degree 𝑡 = 𝑡1+ · · · + 𝑡𝑛
and the term 𝑋

𝑡1
1 · · · 𝑋 𝑡𝑛𝑛 has nonzero coefficient in 𝑓 . If 𝑆1, · · · , 𝑆𝑛 ⊂ F are sets of size |𝑆𝑖 | = 𝑡𝑖 + 1, then there

exists 𝑠 ∈ 𝑆1 × · · · × 𝑆𝑛 such that 𝑓 (𝑠) ≠ 0.

An example application
This theorem is incredibly powerful for additive number theory. If 𝐴, 𝐵 ⊆ F𝑝, define 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈

𝐴, 𝑏 ∈ 𝐵}. Additive number theorists love questions about the size of 𝐴 + 𝐵. Here is an example application of the
Nullstellensatz.

Theorem 8 (Cauchy–Davenport). If 𝐴, 𝐵 ⊆ F𝑝, then

|𝐴 + 𝐵 | ≥ min
(
|𝐴| + |𝐵 | − 1, 𝑝

)
.

Proof. We first consider the case |𝐴| + |𝐵 | ≤ 𝑝 + 1. Suppose for contradiction that |𝐴 + 𝐵 | ≤ |𝐴| + |𝐵| − 2. Choose
a set 𝑆 so that 𝐴 + 𝐵 ⊆ 𝑆 and |𝑆 | = |𝐴| + |𝐵 | − 2. Define a polynomial 𝑓 (𝑋,𝑌 ) by

𝑓 (𝑋,𝑌 ) =
∏
𝑠∈𝑆

(𝑋 + 𝑌 − 𝑠).

The degree of 𝑓 is |𝑆 | = |𝐴| + |𝐵 | − 2. To apply the Nullstellensatz, we want to look at the term 𝑋 |𝐴|−1𝑌 |𝐵 |−1. Since
it is a max degree term, its coefficient will be the binomial coefficient

( |𝐴|+|𝐵 |−2
|𝐴|−1

)
. Since |𝐴| + |𝐵 | − 2 ≤ 𝑝 − 1 by

assumption, this is a nonzero coefficient modulo 𝑝.
Unfortunately, now we apply the Combinatorial Nullstellensatz with our polynomial 𝑓 and the set 𝐴×𝐵 ⊆

(
F𝑝

)2.
There must be some 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 so that 𝑓 (𝑎, 𝑏) = 0, which is of course not possible :(

The case |𝐴| + |𝐵 | ≥ 𝑝 + 2 is much less interesting. One way to prove the theorem is to choose a subset 𝐴′ ⊆ 𝐴

so that |𝐴′| + |𝐵 | = 𝑝 + 1, so we can apply the first case to 𝐴′ and 𝐵. Then, |𝐴′ + 𝐵 | ≥ |𝐴′| + |𝐵 | − 1 = 𝑝, so it must
be all of F𝑝. Of course 𝐴′ + 𝐵 ⊂ 𝐴 + 𝐵, so 𝐴 + 𝐵 is also all of F𝑝.
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Some fundamental applications
Let’s prove a modified version of Cauchy–Davenport. Define 𝐴 +∗ 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵, 𝑎 ≠ 𝑏}. We will

show that if |𝐴| ≠ |𝐵 |, then

|𝐴 +∗ 𝐵 | ≥ min
(
|𝐴| + |𝐵 | − 2, 𝑝

)
.

1. (required) Suppose that |𝐴| + |𝐵 | ≤ 𝑝−2 but |𝐴+∗𝐵| ≤ |𝐴| + |𝐵 | −3. By the same trick as Cauchy–Davenport,
we have a set 𝑆 containing 𝐴 + 𝐵 with |𝑆 | = |𝐴| + |𝐵 | − 3. Construct a polynomial 𝑓 (𝑋,𝑌 ) of degree |𝑆 | + 1
such that 𝑓 (𝑎, 𝑏) = 0 for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. (Even when 𝑎 = 𝑏!)

2. (required) Find the coefficient of 𝑋 |𝐴|−1𝑌 |𝐵 |−1 and argue that it is nonzero.

3. (required) Profit!!

4. (required) Now prove the statement when |𝐴| + |𝐵 | ≥ 𝑝 − 1.

5. (optional) When |𝐴| = |𝐵 |, show that

|𝐴 +∗ 𝐵 | ≥ min
(
|𝐴| + |𝐵 | − 3, 𝑝

)
.

Another classical application is to the Chevalley–Warning theorem.

Theorem 9. Let 𝑓1, . . . , 𝑓𝑘 be polynomials in F𝑝 [𝑋1, . . . , 𝑋𝑛]. Suppose 𝑛 >
∑𝑘
𝑖=1 deg( 𝑓𝑖). If the polynomials have

a common root (𝑐1, . . . , 𝑐𝑛) in
(
F𝑝

)𝑛
, then they have another.

6. (recommended) We want to consider a polynomial like

𝐹 (𝑋1, . . . , 𝑋𝑛) =
𝑘∏
𝑖=1

(
1 − 𝑓𝑖 (𝑋1, . . . , 𝑋𝑛)𝑝−1).

Show that 𝐹 (𝑎1, . . . , 𝑎𝑛) = 0 if and only if the point (𝑎1, . . . , 𝑎𝑛) is a root of each 𝑓𝑖. Why can’t we just
apply the Combinatorial Nullstellensatz and be done?

7. (recommended) Argue that the number (in F𝑝) given by the formula
𝑛∏
𝑖=1

∏
𝑎∈F𝑝 ,𝑎≠𝑐𝑖

(𝑐𝑖 − 𝑎)

is nonzero.

8. (recommended) What we really need is to find a polynomial of the form

𝐺 (𝑋1, . . . , 𝑋𝑛) = 𝐹 (𝑋1, . . . , 𝑋𝑛) + 𝑔(𝑋1, . . . , 𝑋𝑛),

so that if 𝐺 (𝑎1, . . . , 𝑎𝑛) ≠ 0 then (𝑎1, . . . , 𝑎𝑛) is a common root of the 𝑓𝑖s BUT 𝐺 (𝑐1, . . . , 𝑐𝑛) ≠ 0. Can you
find a good candidate for the “error polynomial” 𝑔 by using the previous problem?

9. (recommended) Once you find 𝑔, finish the proof by applying the Nullstellensatz.
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If you like number theory (OPTIONAL)
Theorem 10 (Erdős–Ginzburg–Ziv). For any prime 𝑝 and sequence of integers (𝑎1, . . . , 𝑎2𝑝−1), there is a
subsequence (𝑎𝑖1 , . . . , 𝑎𝑖𝑝 ) of length 𝑝 such that

𝑖𝑝∑︁
𝑗=𝑖1

𝑎𝑖 𝑗 ≡ 0 mod 𝑝.

10. Define two polynomials in 2𝑝 − 1 variables over F𝑝:

𝑓1(𝑋1, . . . , 𝑋2𝑝−1) =
2𝑝−1∑︁
𝑖=1

𝑋
𝑝−1
𝑖

,

𝑓2(𝑋1, . . . , 𝑋2𝑝−1) =
2𝑝−1∑︁
𝑖=1

𝑎𝑖𝑋
𝑝−1
𝑖

.

Show that 𝑓1 and 𝑓2 are both equal to zero at the point (0, . . . , 0).

11. Make sure you can apply the Chevalley–Warning theorem to find another common root.

12. How can you find your subsequence of length 𝑝 from this other common root? (Hint: use the fact that
𝑎𝑝−1 ≡ 1 mod 𝑝 if 𝑎 ≠ 0.

If you like geometry (OPTIONAL)
A hyperplane in R𝑛 is a set of the form {

𝑥 ∈ R𝑛 : ⟨𝑥, ℎ⟩ = 𝑟
}
,

where ℎ is a fixed vector in R𝑛 and 𝑟 is a fixed real number. Think of planes in R3, where ℎ represents the normal
vector and 𝑟 represents how far you translate it from the origin. How many hyperplanes do we need to cover most of
the vertices of the hypercube, {0, 1}𝑛? Let 𝐻1, . . . , 𝐻𝑘 be hyperplanes that cover all vertices of the cube EXCEPT
for the origin, where each hyperplane is parametrized by

𝐻𝑖 =

{
𝑥 ∈ R𝑛 : ⟨𝑥, ℎ𝑖⟩ = 𝑟𝑖

}
,

where each ℎ𝑖 ∈ R𝑛 and 𝑟𝑖 ∈ R is fixed. For this application, we will try something a little different to discover the
right bound for 𝑘 .

13. This is going to be similar to our proof of Chevalley–Warning. We want a polynomial like

𝐹𝑖 (𝑋1, . . . , 𝑋𝑛) =
𝑘∏
𝑖=1

(
⟨𝑋, ℎ𝑖⟩ − 𝑟𝑖

)
,

where 𝑋 is the vector (𝑋1, . . . , 𝑋𝑛). We want to apply the Nullstellensatz with this polynomial and the set
{0, 1}𝑛. What goes wrong?
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14. Again, we need to find an “error polynomial” 𝑔(𝑋1, . . . , 𝑋𝑛), so that 𝐹 + 𝑔 vanishes on all vertices of the
hypercube. Find it!

15. Now apply the Nullstellensatz to 𝐹 + 𝑔. What should the bound on 𝑘 be to get a contradiction?

If you like graph theory (OPTIONAL)
The degree of a vertex in a graph is the number of edges adjacent to it. The average degree of a graph 𝐺 with

vertex set {𝑣1, . . . , 𝑣𝑛} is

1
𝑛

𝑛∑︁
𝑖=1

deg(𝑣𝑖).

In an ideal world, every vertex of a graph has the same degree. When this happens, we say the graph is regular.
Also in an ideal world, the degrees of vertices can’t deviate too much from the average degree, so you should be
able to find a nice regular subgraph on a subset of the vertices.

For a prime 𝑝, suppose 𝐺 is a graph whose average degree is > 2𝑝 − 2 and the maximum degree of any vertex
is 2𝑝 − 1. (This tells us that many degrees are concentrated around 2𝑝 − 2.) Then, 𝐺 has a subgraph (some subset
of vertices and edges) that is 𝑝-regular.

16. This is a counting problem: show that 𝐺 has at most 𝑛(𝑝 − 1) edges. (Hint: relate it to the average degree.)

17. For each edge 𝑒 ∈ 𝐸 , define a variable 𝑋𝑒. We want to choose some edges for our subgraph so that each
vertex has either 0 or 𝑝 of the chosen edges adjacent to it. Convince yourself that we want this.

18. Define a polynomial

𝐹 =
∏

𝑣∈𝑉 (𝐺)

(
1 −

( ∑︁
𝑒∈𝐸 :𝑣∈𝑒

𝑋𝑒

) 𝑝−1
)
,

where the sum is just summing over all the edges corresponding to 𝑣. Suppose we evaluate 𝐹 at a vector that
only takes the values 0 and 1. Think of this vector as an indicator vector for a set of edges (the 1s tell you
which edges to choose). What is the relationship between the chosen set of edges and the polynomial 𝐹?

19. We run into out usual problem: the zero vector is not a root of 𝐹. We want to find a non-root that is NOT the
zero vector. Find a polynomial 𝑔 so that 𝐹 + 𝑔(®0) = 0, AND if (𝐹 + 𝑔) ( ®𝑎) ≠ 0 for some ®𝑎 ∈ {0, 1} |𝐸 |, then
the corresponding set of edges gives you a 𝑝-regular subgraph.
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