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1 THE FUNDAMENTAL GROUP

1.1

Homortory

Two of the most basic questions homotopy theory attempts to answer are extension problems and lifting problems:

1. Extension problem: If A embeds in a topological space X, when can we extend a continuous function f : A — Y toa

continuous function f : X — Y?



2. Lifting problem: If p : E — B is a surjective map, when can we lift a continuous function f : X — B to a continuous
f:X—>E?
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We will answer these questions (in some cases) by using group theory to study the structure of continuous functions from X
toY.

The basic idea is that two continuous functions are homotopic if they can be continuously deformed to each other on their
shared domain. Consider the following three curves 7y, y», and y3 in the punctured plane C \ {0}. The curves vy, and y; can
be continuously deformed onto each other, but deforming either of them onto 3 would require passing through the origin,
which is not in our domain.
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Figure 1: y; and y, are homotopy equivalent but y; and 3 are not.

All functions we consider in this note will be continuous unless otherwise stated.

Definition 1.1. Two maps f,g : X — Y are homotopic relative to A C X if f and g agree on A and there is a continuous
map H : X X I — Y such that H(x,0) = f(x), H(x,1) = g(x), and H(a,t) =a foralla € A and r € [0, 1]. We denote this
as f =~ grelA. H is called a homotopy from f to g, denoted by H : f — g.
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Figure 2: A visualization of the function H.

Example 1.2.



(i) In[Figure 1] think of a closed curve y as amap y : [0, 1] — C such that y(0) = y(1). To apply to this
example, let X = [0,1],Y =C\ {0} and A = {0, 1}.

(i) Given a space X and any set A C R”, any two maps f, g : R" — R” that agree on A are homotopic. Intuitively, this is
because we can get around the problem in there are no “holes” to prevent us from deforming closed curves
onto each other. The easiest formal proof of this is to explicitly construct the homotopy by H(x,1) = tg(x)+(1—1) f(x).

Next, we want to see that homotopy is an equivalence relation.

Proposition 1.3. Fix A ¢ X and j : A — Y. The relation ~ relA is an equivalence relation on the set of functions
{f:X—>Y:fla=J}

Proof. Reflexivity is clear by letting H(x,t) = f(x) forallx € X andt € [0, 1]. For symmetry, given a homotopy H; : f — g,
we “ reverse” it to get a homotopy H; : ¢ — f. Define Hp(x,t) = Hy(x,1 —¢). Finally,let H; : f — gand H, : g — hbe
homotopies. We obtain a homotopy H3 : f — h by “compressing” H; and H, together:

Hi(x,21), 0<r<1/2,

H3(x,t) =
Hy(x,2t—1) 1/2<t<1.

Halxy2t-1)

H, (xy2t)

Figure 3: Compressing two homotopies to obtain a third.

O]

These tricks of reversing and compressing homotopies to obtain new ones will show up several more times. Homotopy
equivalence is also preserved by function composition.

Lemma 1.4. Suppose we have maps between topological spaces
(W, 4) 25 (X, B) = (¥,C)
g/ ’

such that g(A) = g’(A) = B, h(B) = h/(B) = C, g ~ g’relA and h ~ g'relB. Then, ho g ~ h’ o g’rel A.

Proof. Let G : g — g’ and H : h — h’ be the homotopies. The homotopy K : hog — h’ o g’ is defined naturally as a
composition of H and G.

K(w,t) = H(G(w,1),1).
Check that (i) K(w,0) = ho g(w), (i1)) K(w, 1) = h’ o g’(w), and (iii) forall a € A, K(a,t) = ho g(a) = h’ o g’(a). O
Typically, we will only care about the case where A is a point.

Definition 1.5. A pointed space is a pair (X, xg) where X is a topological space and xq a point in X. The point x is referred
to as the basepoint. If (X, xo) and (Y, yo) are pointed spaces, f : X — Y is a pointed map if f(xo) = yo.



Let [X, Y] denote the homotopy equivalence classes of pointed maps from X to Y. It is convenient to omit the basepoint
from our notation: we will see that the objects we study depend only on path-connected components, and not the basepoint.

Definition 1.6 (Homotopy groups). The set 7, (Y, yo) = [S", Y], where the basepoint of $" is (1,0, - - - , 0) is the nth homotopy
group of Y.

When n = 1, we call 71 (Y, yo), or simply 1 (Y), the fundamental group.

1.2 THE GROUP STRUCTURE OF THE FUNDAMENTAL GROUP

It does not make sense to call an object a group unless it is one. The correct way to visualize 71 (Y, yg) is as homotopy
equivalence classes of loops in Y that begin and end at yg. In we said a closed curve was amap y : [0,1] —» ¥
such that y(0) = y(1). Instead of identifying the endpoints O and 1 in the image of v, we can identify them in the domain.
Identifying the endpoints of [0, 1] gives us the circle S', so a closed curve, or a loop, is also amap y : S' — Y. This is a
very useful correspondence and we will make use of both notions of the domain. For example, when we want to define a
homotopy H between two loops, it will be convenient to think of the domain as [0, 1]. When we want to study properties of
aloop f, we will think of the domain as S'. (This is only a general heuristic: what domain we choose will depend heavily on
what we are trying to achieve.)

Figure 4: Each pointed map f : S! — Y isaloopinY

Two loops are homotopy equivalent if one can be continuously deformed onto the other, like in We multiply
elements of 71 (Y, yg) by concatenating the corresponding loops. The element f - g corresponds to first traversing the loop f,
then g. Formally, thinking of f, g as maps [0,1] —» Y

] f(2s), 0<s<1/2
/ g(S)_{g(Zs—l), 1/2<s<1.

As will often be the case with several of these operations,we have to check that this is well-defined: see
Now we are ready to check that the fundamental group is, in fact, a group.

Theorem 1.7. The fundamental group (Y, yo) is a group under the operation [ f] - [g] = [ f - g].

Proof.  Step 1: the identity
The identity element is the simplest map we can think of. Let ¢ : S! — ¥ be the constant map c¢(x) = yo for all x € S'.
Then, for any map f : S! — Y, define a homotopy H from f to ¢ - f by

y 2s <t,
H(S’ t) = 2s—t
f(ﬁ) 2s > 1.
Check that H(s,0) = f(s) and H(s, 1) = ¢ - f(s). How do you modify this construction to get a homotopoy H’ from f to
f - c¢. This shows that ¢ is a two-sided identity in 7r{(Y).

Step 2: associativity



I will present the homotopy showing that (f - g) - h = f - (g - h), and leave the tedious task of verification to the reader.

f(%) 4s <2—1t,
H(s,t) =qg(4s+t-2) 2-1<4s<3-1,
h(4s+t—3) 3 _t<4s.

1+t

Step 3: inverses
Given f : [0,1] — Y, define f~! by f~!(s) = (1 —s). Intuitively, f~! traverses the same loop as f, but in the opposite
direction. Define a homotopy H from c to f - f~1,

f(2s1) 0<s<1/2
H(s,t) =1fQ2(1-s)1) 1/s<s<1

Since (f~!)~! = f, the same construction gives us a homotopy from ¢ to f~! - f. [

The most important fundamental group to remember is 711 (S') = Z. We will see a short proof of this later using heavier
machinery, because trying to prove it directly from the definition is longer and more painful. Here is a handwave-y argument:
the only nontrivial loop is the circle itself, which is a rotation by 2xr. All other loops are simply concatentations of this loop
by itself, namely integer multiples of the rotation.

The fundamental group (as we will see during our time with homotopy) captures several properties of the initial space,
as exemplified by the following proposition.

Proposition 1.8. Let f : X — Y be a pointed map. Define fy : m1(X) — m1(Y) by faly]l = [f o ¥|[} Then, fy is a group
homomorphism.

Proof. We need to show thatif y ~ w, then fyoy =~ fyow, so that fy is well-defined. This is an easy application of
with (W, A) = (S, (1,0)). Next, to see that fi respects the group operation, note that f o (w-y) = (f ow) - (f o y) by an
easy exercise in definition-chasing (see [Exercise 2)). So,

felo-yl=[fe(w-]=[(feow) - (foy)]=I[fow] [foy]=filo]- fily].
O

Remark 1.9. For the category theorist, the association (X, xg) — 71 (X, xo) with f — f& is a functor from the category of
pointed topological spaces to the category of groups.

We have been very liberal with omitting the basepoint in our notation. To what extent does the basepoint matter to the
fundamental group?

Proposition 1.10. The group n1(Y, yo) depends only on the path-connected component of Y containing .
(i) If Yy is the path component containing yo, then n1(Y, yo) = 71 (Y’, yo).
(i) If yo and y; are in the same path component, then (Y, yg) = m1(Y, y1).

Proof. The proof of (i) is not complicated. There is a one-to-one correspondence between pointed maps f : S' — (¥, o) and

f 1S — (Y, y0), the correspondence being that they are the same. Any map f : §' — Y must lie in one path component.
The proof of (ii) involves a little more work. Let @ : [0,1] — Y be a path from yg to y;. Given a loop f at yg, we can

construct a loop at y; by travelling from y; to yo along a~!, traversing f, then travelling back to y; along a. (See )

Pronounced ‘f-sharp’.



Figure 5: Creating a loop at y.

Define ¢ : 71 (Y, y0) — m1(Y,y1) by [f] = [@- f-a~'], where @ - f - @' denotes the concatenated map [0, 1] — Y.
Any homotopy f — g extends naturally to a homotopy from a - f -~ to @ - ga™!, so ¢ is well-defined. (Work out the details

in [Exercise 3|)

¢ is a homomorphism.
¢([fllgD) =la-f-a'lla-g-al=[a-f-(a"-a-g-a'|=[a-fg-a”'],
since @ - @~! is homotopic to the identity. (This was step 3 in the proof of [Theorem 1.7})

¢ is injective. Forany f,g € m1(Y, yo). Let ¢g and ¢ be the constant loops at yy and y; respectively. If ¢[ f] = [c1], then

1

f=cofcoxala- f-ala~alcia = ala = c.

The reader should verify that each ~ does, in fact, indicate a homotopy equivalence using the fact that 7 (Y, yo) and 1 (Y, y1)
are well-defined groups.

¢ is surjective. For any [g] € 71 (Y, y1), f = @' ga is a loop centered at yo, and ¢([ f]) = [g].

The fundamental group is preserved by direct products.

Proposition 1.11. Let X = [];c; X;. For any x = (x;)ie; € X, m(X,x) = [l;¢; 711(X;, x;), i.e. the fundamental group is
preserved by direct products.

Proof. There is an obvious choice for the group isomorphism. Each projection p; : X — X; induces a group homomorphism
pi# : (X, x) = m(X;, x;). Let ¢ @ m1(X,x) — [lief m1(Xi, x;) be the extension ¢([f]) = [1;e; pi#[f]. The map ¢ is a
group homomorphism because each map p;# is.

¢ is injective. Suppose @[ f] is the identity. Then, there are homotopies H; : p[f] — c; for each i € I, where ¢; is (as
always) the constant loop at x;. The product homotopy H(z,t) = (Hl-(z, t))_ , defines a homotopy from f to (c;);es, the
1€

constant loop at x € X. (See[Exercise 4]) O

We will soon fall into the practice of omitting the basepoint from our notation. This poses a slight notational problem for
the identity element of the fundamental group. The letter ¢ will be reserved for the constant loop, and we will use subscripts
to indicate which space we are referring to. For example, when we only consider one or two pointed spaces, say X and Y, we
will call their respective loops cx and cy. However, as in the previous proposition when we consider indexed spaces (X;);er,
it is convenient to refer to their loops as c;, thereby avoiding a dreaded double subscript.

Intuitively, we would like a sphere of radius 2 to be the same as a sphere of radius 1: they have exactly the same loops,
only at different scales. How do we formalize this notion?



Definition 1.12. A pointed map f : X — Y is a homotopy equivalence if there is a pointed map g : ¥ — X such that
go f ~1xand f o gly, the identity maps on X and Y respectively. Two spaces X and Y are homotopy equivalent if there is a
homotopy equivalence between them.

Example 1.13.

(i) Any homeomorphism between two spaces is a homotopy equivalence. This is the special case when f o g and g o f
are equal to the identity maps.

(ii) The space R" is homeomorphic to a single point, say {a}. Define f : R" — {a}, as the constant map, and g : {a} — R"
by g(a) = x, where x is our chosen basepoint. Clearly f o g = 1{,). Conversely, require that any two maps R" — R"

are homotopic by [Example 1.2 so g o f =~ 1gn.

(iii) The inclusion map from S! to C \ {0} is a homotopy equivalence. Intuitively, we expand the hole at 0 in C \ {0} to a
circle, and compress the rest of the plane onto the circle. Formally, [2| we define a retraction from C \ {0} to S!. Define
r:C\{0} - S'byr(z) = ﬁ The composition r o i is the identity on S'. The other composition i o r is homotopy
equivalent to the identity on C \ {0} via the homotopy

Z
HE&D = 1=

Theorem 1.14. If X and Y are homotopy equivalent, then 1 (X) = m1(Y).

Proof. Let f : X — Y be a homotopy equivalence with inverse g : ¥ — X. Recall that fx : 71(X) — m1(Y) is a group
homomorphism. Given any loop [@] € 71 (X), gsfe[a] = [go foa] = [1x o @] = [a]. The same argument shows that fugs
is the identity on 71 (Y). We have proven a little more: every homotopy equivalence induces an isomorphism of fundamental
groups. O

Exercises

Exercise 1. Let f and g be pointed maps from S to Y. If f/ ~ f and g’ ~ g are homotopic as pointed maps, then f-g =~ f’-g’,
with the group operation as above. [}

Exercise 2. Show that f o (w-7y) = (f ow) - (f o) in the proof of [Proposition 1.8|

Exercise 3. Leta : [0, 1] — Y be a path from yq to y; and f aloop at yy, as in the proof of [Proposition 1.10} Define the map

a@-f-a':[0,1] — Y and verify that it is a loop at y;. If H : f — g is a homotopy relative to y, construct a homotopy

froma-f-a ' sa-g-al.

Exercise 4. Show that the product homotopy H(z,t) from the proof of |Proposition 1.11]is in fact a homotopy from f to

(¢i)ier- You will need to use the construction of each p;s from [Proposition 1.8

1.3 CONTRACTIBILITY

The last two examples in showcase two important types of homotopy equivalences. Example (ii) shows
contractibility to a point, while example (iii) is a deformation retraction onto a subspace. Contractibility is a special case of
a deformation retraction, but noteworthy enough to merit a separate definition.

Definition 1.15. A pointed space (X, xo) is contractible if 1x =~ cx, i.e. the identity map on X is homotopy equivalent to the
constant map xo.

20r, unintuitively.
3Hint: In the proof of [Proposition 1.3] we concatenated two homotopies by compressing them along the second coordinate. In this case, given
homotopies F : f — f" and G : g — g’, concatenate them by compressing along the first coordinate.



Remark 1.16. Be careful! This is the definition of contractibility for pointed spaces. An arbitrary space X is contractible if
the identity is homotopy equivalent to a constant map, but not necessarily through a basepoint-preserving homotopy. At the
end of this section, we will see an example of a space that is (weakly) contractible to a point, but not (strongly) contractible
as a pointed space with that basepoint.

Think of a contraction literally: you squeeze R” to a single point. The disk D", for example, is contractible. Let p be the
center of the disk and also its basepoint. The map H : 1p» — ¢, by H(x,t) = tp + (1 — t)x is a homotopy.

In general, we say f : S' — X is null homotopic if it is homotopic to the constant map. A space X is then contractible if
every loop is null homotopic. Of course, since homotopy is an equivalence relation, this means that all loops are homotopic.

Proposition 1.17. If X is contractible and Y is any topological space, then any two maps from Y — X are homotopic.
Further, X is contractible if and only if X is homotopic to a point.

Proof. The first statement follows immediately from the definition: if f : ¥ — X is any map, then f = folx ~ focy,
the constant map from Y to X. If X is contractible, then cx : X — {x¢} and the embedding of the basepoint i : {xo} — X
are homotopy equivalences. For the easy direction, i o cx is the identity map on {x¢}. For the other (but still easy) direction,
cx ol =cx =~ lx since X is contractible. Conversely, suppose X is homotopy equivalent to a point: without loss of generality,
the point {xo}. Then, there exist homotopy equivalences f : X — {xo} and g : {xo} — X. Of course, since we only care
about basepoint-preserving maps, g : {xo} — X must be the embedding i : {xo} — X, and f can only be the constant
map cx : X — {xo}. The composition cx o i = cx is homotopy equivalent to 1x, which is exactly the statement that X is
contractible. O

Example 1.18. Any convex subset X of R" is contractible to any point xop € X. The homotopy from 1x to cx is simply
H(x,t) = txo + (1 — ¢)x. In particular, R" is contractible to any point in the space.

We can use contractibility to answer an extension problem: when can we liftamap f : " — Y toamap f : D! — Y?
Corollary 1.19. Let f : S™ — Y be a pointed map. Then, f extends to a map f : D' — Y ifand only if f ~ cy.

Proof. Leti: S™ — D"*! be the inclusion map, and suppose f extends to a map f on D™*! so that f = f oi. Since D"*! is
contractible, f =~ cy, so f is also homotopy equivalent to a constant map.
Conversely, suppose H is a homotopy from cy to f. Define the extension

Y0, 0 < |x|]| <1/2;
H(" 2||x||—1), 172 < |Ix]| < 1.

[x{1”

fx) =

Figure 6: Extending the map f to D!



We can use this result to produce a new proof of the fact that homotopy equivalence induces an isomorphism of
fundamental groups.

Definition 1.20. A space Y is simply connected if it is path connected and 7, (Y) = 1.

Corollary 1.21. Suppose f,g : I — Y are maps such that f(0) = g(0) and f(1) = g(1). If Y is simply connected, then
f =~ grel{0, 1}.

Proof. Since f(0) = g(0) and f(1) = g(1), this defines a map h on d(I x I), where h(x,0) = f(x), h(x,1) = g(x),
h(0,y) = f(0) and A(1,y) = g(1).

£00) g

Figure 7: The map h.

Using a homeomorphism, we can identify I x I with D? and d(I x I) with S'. By the previous corollary, we can extend
this map to S' if and only if the map # is null homotopic. However, since 1 (Y) = 1, 4 must be null homotopic. The extension
of the map to S! and its pullback to 7 x I gives us the homotopy from f to g. O

Theorem 1.22. Let f, g be maps (not necessarily pointed!) from X to Y and H a homotopy from f to g. Set yo = f(xo) and
y1 = g(xo), and let @ be the path a(t) = H(xo,t) from yg to yy. Then, the following diagram commutes

1 (Y, y0)

y

m1(X, xo) a.

o

m(Y,y1)

where a* is the isomorphism that sends [w] € m1(Y, o) to [a ' wa].

Proof. Given [w] € m1(X,x(), we need to show that o* fi[w] = gs[w],i.e. ™' (f ow)a =~ g o w (this time as pointed maps).
We can define a map on d(I x I) using the same trick as the previous corollary:

gow

<—

a '(fow)a

Under the homeomorphism from d(I x I) to S' = I/{0, 1}, the oundary map becomes the concatenation [c;lla_l( fo
w)acy, (gow) ] = [ (f o w)a(gow)™].



xxI —Hsy

cquT

Stx1

The composition in the above diagram tells us that f o w is homotopic to g o w. O

As a corollary, if f : X — Y is a homotopy equivalence, then fi : 71 (X, x9) — 71 (Y, yo) is a group isomorphism. If g is
a homotopy inverse to f, let H be the homotopy from g f to 1x and a(¢) = H(xg, ). The theorem tells us that the diagram
commutes:

m1(X, xo)

m1(X, x0) @

m

m1(X, g f(x0))

s0 (gf)# = guf# = @, is an isomorphism. By the same reasoning, fug# is an isomorphism. In this case, fs and gs must each
be isomorphisms.

Corollary 1.23. If X is contractible, then X is simply connected.

Proof. Let H be a homotopy from 1x to cx. For any y € X, define w : I — X by w(¢) = H(y, t). This is a path from y to xo,
so X is path connected. Since X is homotopy equivalent to a point {xo}, 71 (X, x0) = 71 ({x0}) = 1. O

In general, the contractibility of a space X is not independent of the choice of basepoint {x¢}.

Figure 8: The comb space

Consider the comb space as a subspace of R?, with a vertical copy of the unit interval above each point (1/n,0) on the
x-axis. More formally, the comb space is the subset X of 7 X I, with X = (I x {0}) U ({0} x ) U ( U, ({1/n} x I).

This is a good moment to pause for a sanity check. The comb space is homotopic to a point, but does not deformation-
retract onto any basepoint. (see here| for a discussion of this fact). But didn’t we just prove that if a space is homotopic to
a point, then it deformation retracts to its basepoint? This is a problem with our definition of contractibility. In general,
contractibility does not require being “relative to the basepoint”, unlike deformation retractions.

10
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2 COMPUTING FUNDAMENTAL GROUPS

2.1 THE FUNDAMENTAL GROUP OF S

This presentation is based on section 1.1 of Hatcher. The goal is to get our hands a little dirty computing one fundamental
group. All the other fundamental groups will be computed using either Van Kampen’s theorem or covering spaces.

Theorem 2.1. The map ¢ : Z — (S 1) that sends n to the homotopy class of the loop w,(t) = (cos(2nnt), sin(27nt)) is an
isomorphism.

Corollary 2.2 (The fundamental theorem of algebra). Every nonconstant polynomial in C[X] has a root in C.

1

Proof. Suppose p(z) =z7"+au-12""" +---+ a1z + ap. If p has no roots in C, then for every r > O and ¢ € [0, 1],

p(re*™™) [ p(r)

fr(0) = |p(re2xin/p()]

is well-defined. For fixed r, this defines a loop in S! based at 1. The loops (f;), 0 are homotopy equivalent (why?). The loop
fo is the constant loop, so the class [ f;] is trivial in 71 (S").

Choose r > max(|ag| + - - - + |an-1], 1). Then, if |z| = 7, |2 > (lag| + - -+ + |an-1D|Z"| = |lag + - + an12"7']. It
follows that for each 0 < s < 1, the polynomial py(z) = 2" + s(an_12"~' + - - - + a1z + ap) has no roots on the circle |z| = r.
We can define f; ,(#) analogously for the polynomials p,(z). As s goes from 1 to 0, this defines a homotopy from f; to the
loop w, (1) = e*™™ _ Since p is nonconstant, n > 1 and w,, is a nontrivial loop in 7{(S'), a contradiction. O

Corollary 2.3 (Two-dimensional Brouwer fixed point theorem). Every continuous map h : D> — D? has a fixed point.

2.2 VAN KAMPEN’S THEOREM
Van Kampen’s theorem is one of two powerful tools to compute homotopy groups.

Theorem 2.4 (Van Kampen, version 1). Let U and V be connected open subsets of X such that U UV = X and UNV is
nonempty, connected, and contains the basepoint. Letiy : UNV — U, iy : UNV -V, jy:U — X, and jy : V — X be
the inclusion maps. Then,

71 (X) = 1 (U) *x,(unv) m1(V),
where * denotes the amalgamated free product.

The amalgamated free product is essentially a noncommutative version of the direct product. In the most general case,
suppose we have groups (G ) and some group A equipped with homomorphisms f, : A — G,. The amalgamated free
product with respect to A is denoted by G = %,G, and constructed in the following complicated way. The elements of G
are reduced words g; - - - g, Where each g; is in a different group G . The group operation o is concatenation, but we are
allowed to multiply letters from the same group.

That is, if g € G, then g o g is the letter g> € G. This is the free product of the groups G . To amalgamate it, we quotient
out by the relations

gfala)h =g fp(a)h.

if g € Go,h € Gg, and a € A, When the homomorphisms f,, are all trivial homomorphisms (like when A is the trivial
group), this is the free product of the groups G . For example, Z *; Z is the free group on two elements.
A sequence of homomorphisms ¢, : G, — H induces a homomorphism ® : %,G, — H by ®(g;---gm) =

$a(81) - e(@m)(gm)-

Theorem 2.5 (Van Kampen, general version). Let (Uy) be a collection of connected open sets that cover X such that
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(i) each U, contains the basepoint x¢, and
(ii) the pairwise intersections U, N Ug are nonempty and connected.

Then, the homomorphism from the (non-amalgamated!) free product ®@ : +om1(Uy) — X induced by the inclusion maps is a
homomorphism.

If every triple intersection U, N Ug N U,, then ker(®) is the normal subgroup generated by iaﬁ(w)iﬁa(w)_l, where
iop i m(Uoa NUB) = m(Uy) and igy : w1 (Uq N Ug) — m1(Up) are induced by the inclusion maps.

This is pretty complicated, and probably not typically a result you will use. Instead, a fairly standard induction argument
gets you a more useful generalization.

Theorem 2.6 (Van Kampen, inductive). Let Uy, - - - , U, be open connected sets that cover X and each contain the basepoint.
If each pairwise intersection U; N U; is nonempty and connected,

m1(X) = 1 (Uy) *x,ynws) 71(U2) * 7, (0,002)n0) TF1LU3) - % () (U) U1 (Un))U) T1(Up).

2.3  ApPLICATIONS OF VAN KAMPEN

Example 2.7 (Fundamental group of a wedge sum.). Let (X,,x,) be a collection of spaces such that each x, is the
deformation retract of an open neighborhood V, in X,. Let U, = X, Bra Vp- The sets U, cover \/ X4, and the pairwise
and triple intersections deformation retract to the basepoint. Further, the spaces U, N Ug are contractible and have trivial
fundamental group, so the homomorphisms i, are all trivial. Van Kampen’s theorem now implies that

s (Xa) = 11 (\/ Xa).

Example 2.8 (Fundamental group of a graph.). Let G be a connected graph with n vertices and m edges. I claim that
71(G) is the free group on m — n + 1 elements.

Let T be a spanning tree of G, so T has (n — 1) vertices. For each edge ¢; ¢ T, let U; be an open neighborhood of T
that contains e; (but no other extra edges). Then, U; deformation retracts to 7. The connected open sets U; cover G and their
pairwise intersections deformation retract to 7', which is contractible. So, Van Kampen’s theorem tells us

11 (X) = *e,¢7Z,

which is the free group generated by m — n + 1 elements.

3 AN INTRODUCTION TO HOMOLOGY

While the homotopy groups are easy to define, they are typically difficult to compute. Even the higher homotopy groups of
n-spheres are notoriously difficult to compute. The homology groups, on the other hand, are much easier to compute because
they usually terminate in a chain of zeroes. They also have the added advantage of being abelian.

Figure 9: The triangulation of D?
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Figure 10: The 0—, 1—, and 2—simplices

The nth homotopy group tells you about n-dimensional holes in your space by looking at homotopy classes of loops.
The homology groups do something similar: they identify holes by looking at triangulations of the space. For example,
we can think of the disk D? as a (filled-in) triangle, which is contractible, so D? has no holes in any dimension. (They are
homeomorphic, after all.) Of course, once we start looking at higher-dimensional objects, like D3, we have to use uncountably
many two-dimensional triangles to cover the space, and this becomes meaningless. This motivates our use of the n-simplex:

Definition 3.1. The standard n-simplex, denoted A", is the convex hull of the standard basis vectors in R” and the origin with
a linear order on its vertices determined by the coordinates.

In general, an n-simplex in R” is a convex hull of n + 1 affinely independent vectors in R equipped with a linear order.
While we do not need to use the linear order for CW-complexes (yet), we will need it to define A-complexes, and to construct
the homology groups. Some facts about n-simplices:

(1) The convex hull of m + 1 vertices, where m < n, is called an m-face of the n-simplex. Every m-face is an m-simplex.
(2) The boundary A" is the union of the (n — 1)-faces.

(3) The m-faces are in one-to-one correspondence with the (m + 1)-sets of vertices.

(4) A O-face is a vertex and a 1-face is an edge.

Now, for example, we can triangulate D> via a homeomorphism to a tetrahedron. In general, the disk D" is homeomorphic to
the simplex A". A triangulation, loosely speaking, is a collection of maps from n-simplices to our space. For example, here are
two triangulations of S'. One identifies the vertices of A! (the unit interval [0, 1]) with a single point A?. The other is simply
the homemorphism from S! to the boundary of d(A?), which consists of three 1-simplices (edges) and three 0-simplices
(vertices).

1-simplex

Figure 11: Two triangulations of S'

3.1 ComprLEX? | FIND IT QUITE SIMPLE, REALLY

Since a collection of maps from simplices to a space X produces a more complicated structure, we call X a complex,
where the type of complex depends on the maps. The three types we will look at are

simplicial complex € A-complex € CW-complex.

We will repeatedly switch between thinking of the n-simplex as the standard n-simplex, and as the homemorphic space D",
so that the boundary of the n-simplex is homeomorphic to $"~!.
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3.1.1 CW-complexes
The easiest definition of a CW-complex is the inductive construction.
Definition 3.2. A CW-complex is a space X formed in the following way.
1. Begin with a discrete space X°. (These are the points of X equipped with the discrete topology.)

2. Suppose we have constructed X"~!. Take a collection of maps f, : S"~! — X", for a in some index set J,,. The
space X" is formed by taking the union of X"~ with J,, copies of D” and taking the quotient by the equivalence
relation x ~ f,(x). More precisely,

xn - (x*tul o),
a

3. If we stop the construction after finitely many steps, X = X" for some n. Otherwise, we inductively perform this
construction for every n € N, and X = U, X". In the latter case, we equip X with a weak topology: a set A C X is
closed if and only if A N X" is closed for every n € N.

Step two is the heart of the construction; the maps f,, glue the boundaries of the n-simplices to the (n — 1)-simplices in
X"~1. Since the only restriction we have is that the f,,’s be continuous, this gluing does not have to be nice.

Definition 3.3. The interior of the disk D" (or the simplex A") is called an n-cell. When n = 0, a 0-simplex is a O-cell.

This is useful terminology because when we glue A" to X!, we identify d(A") with simplices in X*~!, and what
remains is the n-cell, int(A").

Example 3.4.

(1) The sphere S" is formed by first taking a O-cell, eg, and attaching A" to it by identifying the boundary of A" with the
single point ey.

(i) We can also form the sphere S" with a finer structure by identifying it with the boundary 9(A™).

(iii) Here is a non-example. We can write the sphere S” as a disjoint union of O-cells, S” = Uyesn{x}. This is not a
CW-complex, for the silly reason that it violates the first condition: S™ is not a discrete space. More generally, this is
also why we have the third condition to prevent trivial complexes that are just the points of the space.

An equivalent way to define a CW-complex is by defining the gluing maps to act on all of D", not just its boundary.
Definition 3.5. A CW-complex is a space X that can be formed in the following way.
1. Begin with a discrete space X°. (These are the points of X equipped with the discrete topology.)

2. Suppose we have constructed X"~!. We have a collection of maps o, : A" — X, for & in some index set J,,. Each o,
is injective on the interior int(A™), and the restriction to the boundary is a map o, : d(A") — X"~!. Define X" to be
the union of X"~ with J,, copies of A", quotiented by the equivalence relation x ~ f,,(x). More precisely,

xn = (X" UDH)/N.
a

3. Either X = X" for some n, or X = U> X" In the latter case, we equip X with a weak topology: a set A C X is closed
if and only if A N X" is closed for every n € N.

In step 2, the injectivity of the embedding on the interior of A" is exactly the same as only gluing the boundary of A" to
X", so the interior is preserved.

4Remember, we identify D" with A™!
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3.1.2 A-complexes

The construction of S with one 0-cell and one n-cell is not very natural for n > 2. We would like to glue the boundary
of an n-simplex to (n — 1)-simplices. A A-complex is a CW complex where the restriction of the gluing maps o, : A" —» X
to each (n — 1)-face of A" is an inclusion map.

Definition 3.6. A A-complex structure on a space X is a collection of maps o, : A" — X (where @ depends on n) such that
(i) Each o, : A — X is injective on the interior of A", and each x € X is in the image of exactly one such interior.

(ii) The restriction of o, : A" — X to every (n — 1)-face of A" is another map o7 : A" — X. We identify the face with
A""! with using the linear homemorphism that preserves the order of the vertices.

(iii) A set A C X is open if and only if o' (A) is open in A" for every map.

Again, the last condition is to prevent silly structures like considering X as a collection of O-cells. An important
consequence of the A-complex structure is that if we have a map o, : A" — X for some 7, then the A-complex must contain
maps og : AF — X for every k < n (by restricting o, to the faces of A”). The CW-complex structure of S as an n-cell and
a 0-cell is not a A-complex for n > 2.

Example 3.7.
1. The homeomorphism from 9(A") — §"~! is a A-complex structure.

2. Here is a A-complex structure on the torus.

Wy

\ID
Figure 12: A A-complex structure on the torus

3. Here is a structure that is not a A-complex structure on the torus

Wiy v

Vo

Figure 13: Not a A-complex structure on the torus
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3.1.3 Simplicial complexes
Simplicial complexes have even more structure than A-complexes.
Definition 3.8. A simplicial complex structure on a space X is a A-complex structure such that
(i) Each o, : A" — X maps different faces of A" to different (n — 1)-simplices in X!,
(i) The image of each simplex in X is uniquely determined by its vertices.
For the combinatorialists, here is another definition.
Definition 3.9. A simplicial complex K is a collection of simplices such that
(i) Every face of a simplex in K is also in K, and
(ii) the nonempty intersection of any two simplices o7, 0» € K is a face of both o and 0.
A simplicial complex structure on a space X is a homeomorphism from a simplicial complex to X.
Example 3.10.

1. The A-complex structure on S! formed by attaching a 1-cell to a O-cell is not a simplicial complex. Let o : A° — X
and oy : A' — X be the attaching maps. The map o : Al — S! maps both vertices of A! to the same point in X,
violating (i). The structure also violates (ii): the vertex A determines both maps oy and o7.

2. The homeomorphism d(A”) — $"~! is a simplicial complex structure.

Any A-complex structure can be subdivided to create a simplicial complex structure. Here is an example for the sphere
S! with the A-complex structure of a 1-cell and a 0-cell.

Figure 14: By subdiving S' enough times, we create a simplicial complex structure.

Of course, the structure we have created is just the homeomorphism d(A?) — S!, but the method is instructive.

3.2 THE SINGULAR HOMOLOGY GROUPS

Now we will forget all about our complexes and construct the most general homology groups: the singular ones. Instead
of considering maps o : A" — X that have a nice structure, we will consider all possible continuous maps o : A" — X. This
has the advantage of being general, but the disadvantage of being computationally unwieldy. We will later see that we can
define homology groups using the nicer structures from the previous subsection, and that these homology groups are exactly
the same.

Definition 3.11. For every n € N, define the chain group C, (X) as the free abelian group generated by all possible maps
o : A" — X. That s,

C,(X) = {Z NaOq @ 0q: N — X},

where we only allow finite sums. The elements of C,,(X) are called n-chains of X.

The formal sums in C,,(X) are similar to the concatenation of loops we saw in the fundamental group. Since the simplices
are oriented, we can think of its image under a map o as oriented in X. The element n - o involves walking along the image
of o n times, where the direction of the walk depends on whether # is positive. This analogy does not extend well to formal
sums ) n,0 o Where the images of each o, might be disjoint. To force an extension, we can imagine a person walking along
0o Ng times, and then jumping to the next map.

Remember, the intuition for homology is to measure the holes in the space. So, we need to look at the boundaries of the
maps 0g.
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Figure 15: The orientation-preserving walk along the boundary of A uses the edges [vovi], [viva], =[vova].

Definition 3.12. Define the boundary map 0, : C,(X) — C,_1(x) as follows. Write the n-simplex A" as [vo, -+ ,V,],
where the vertices are ordered. Let [vo,--- ,V;, -+, v,] be the (n — 1)-simplex with vertices {v; : j # i}. This is the unique
(n = 1)-face of A" that does not contain the vertex v;. Given a map o : A" — X, let o|[vg, -, Vi, -+ ,Vv,] denote the
restriction of o to the (n — 1)-face. Define

n

() = Y (=Dl [vo, - i+ val € Camr(X)
i=0

and extend it linearly to the free abelian group C, (X). When n = 0, ¢ : Co(X) — 0 is the zero map.

The reason for the factor of (—1) is to make sure that our imaginary walk along A" is orientation-preserving. Consider
the following example with the triangle A”:

Lemma 3.13. The boundary maps satisfy 6,, 0 6,41 = 0.

Proof. Given o : A" — X,

n+1

5n6n+1(0-) = 611 Z(_l)la-| [V(), B ‘;\ia Y Vn+1]
i=0

n+l n+l

= Z Z(—l)]+l(7| [VO, Tt ‘;i’ vAjv T, Vn+l] + Z Z(_l)j+l+i0-| [VO, T, ‘;i’ vAjv R vn+l]

i=0 j<i i=0 j>i
=0.

Each term [vg,- -+ , Vi, -+, Vue1] is an (n — 1)-simplex in its own right. When we remove vertex j from the order, the parity
of its appearance depends on whether j < i or j > i. This is why the second boundary map splits into two sums that cancel
each other.

Extending this linearly yields the result that 6, o §,,+1 = O on the entire chain groupE] O

Now we are ready to define the homology groups. The previous lemma tells us that the sequence (Cy, (X ))n oy forms what
is called a chain complex with the boundary maps.

Definition 3.14. A chain complex is a sequence of groups (C,);, ez With connecting homomorphisms ¢, : C;, — C,,—1 such
that 6" o (5n+1 = 0

Homology groups can be defined for any chain complex, but for now we will focus on our topological motivations. For
our homology groups, we only consider chain complexes where C,, = 0 for n < 0.

Definition 3.15. The nth singular homology group of X is defined as

_kerd, .
Hn(X) = Xer 1mo,,41°

The elements of imd,,.| are called boundaries because they arise as the boundaries of (n + 1)-chains. The elements of
ker 6,, are called cycles because their b