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1 The fundamental group

1.1 Homotopy

Two of the most basic questions homotopy theory attempts to answer are extension problems and lifting problems:

1. Extension problem: If 𝐴 embeds in a topological space 𝑋 , when can we extend a continuous function 𝑓 : 𝐴 → 𝑌 to a
continuous function 𝑓 : 𝑋 → 𝑌?
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2. Lifting problem: If 𝑝 : 𝐸 → 𝐵 is a surjective map, when can we lift a continuous function 𝑓 : 𝑋 → 𝐵 to a continuous
𝑓 : 𝑋 → 𝐸?
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We will answer these questions (in some cases) by using group theory to study the structure of continuous functions from 𝑋

to 𝑌 .
The basic idea is that two continuous functions are homotopic if they can be continuously deformed to each other on their

shared domain. Consider the following three curves 𝛾1, 𝛾2, and 𝛾3 in the punctured plane C \ {0}. The curves 𝛾2 and 𝛾1 can
be continuously deformed onto each other, but deforming either of them onto 𝛾3 would require passing through the origin,
which is not in our domain.

𝛾1

𝛾2

𝛾3

Figure 1: 𝛾1 and 𝛾2 are homotopy equivalent but 𝛾1 and 𝛾3 are not.

All functions we consider in this note will be continuous unless otherwise stated.

Definition 1.1. Two maps 𝑓 , 𝑔 : 𝑋 → 𝑌 are homotopic relative to 𝐴 ⊂ 𝑋 if 𝑓 and 𝑔 agree on 𝐴 and there is a continuous
map 𝐻 : 𝑋 × 𝐼 → 𝑌 such that 𝐻 (𝑥, 0) = 𝑓 (𝑥), 𝐻 (𝑥, 1) = 𝑔(𝑥), and 𝐻 (𝑎, 𝑡) = 𝑎 for all 𝑎 ∈ 𝐴 and 𝑡 ∈ [0, 1]. We denote this
as 𝑓 ≃ 𝑔rel𝐴. 𝐻 is called a homotopy from 𝑓 to 𝑔, denoted by 𝐻 : 𝑓 → 𝑔.

𝑓 (𝑥)

𝑔(𝑥)

𝐻 (𝑥, 𝑡)
𝐴 × [0, 1]

Figure 2: A visualization of the function 𝐻.

Example 1.2.
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(i) In Figure 1, think of a closed curve 𝛾 as a map 𝛾 : [0, 1] → C such that 𝛾(0) = 𝛾(1). To apply Definition 1.1 to this
example, let 𝑋 = [0, 1], 𝑌 = C \ {0} and 𝐴 = {0, 1}.

(ii) Given a space 𝑋 and any set 𝐴 ⊂ R𝑛, any two maps 𝑓 , 𝑔 : R𝑛 → R𝑛 that agree on 𝐴 are homotopic. Intuitively, this is
because we can get around the problem in Figure 1: there are no “holes” to prevent us from deforming closed curves
onto each other. The easiest formal proof of this is to explicitly construct the homotopy by 𝐻 (𝑥, 𝑡) = 𝑡𝑔(𝑥) + (1− 𝑡) 𝑓 (𝑥).

Next, we want to see that homotopy is an equivalence relation.

Proposition 1.3. Fix 𝐴 ⊂ 𝑋 and 𝑗 : 𝐴 → 𝑌 . The relation ≃ rel𝐴 is an equivalence relation on the set of functions
{ 𝑓 : 𝑋 → 𝑌 : 𝑓 |𝐴 = 𝑗}.

Proof. Reflexivity is clear by letting𝐻 (𝑥, 𝑡) = 𝑓 (𝑥) for all 𝑥 ∈ 𝑋 and 𝑡 ∈ [0, 1]. For symmetry, given a homotopy𝐻1 : 𝑓 → 𝑔,
we “ reverse” it to get a homotopy 𝐻2 : 𝑔 → 𝑓 . Define 𝐻2(𝑥, 𝑡) = 𝐻2(𝑥, 1 − 𝑡). Finally, let 𝐻1 : 𝑓 → 𝑔 and 𝐻2 : 𝑔 → ℎ be
homotopies. We obtain a homotopy 𝐻3 : 𝑓 → ℎ by “compressing” 𝐻1 and 𝐻2 together:

𝐻3(𝑥, 𝑡) =
{
𝐻1(𝑥, 2𝑡), 0 ≤ 𝑡 ≤ 1/2,
𝐻2(𝑥, 2𝑡 − 1) 1/2 ≤ 𝑡 ≤ 1.

Figure 3: Compressing two homotopies to obtain a third.

These tricks of reversing and compressing homotopies to obtain new ones will show up several more times. Homotopy
equivalence is also preserved by function composition.

Lemma 1.4. Suppose we have maps between topological spaces

(𝑊, 𝐴)
𝑔
−→
𝑔′

(𝑋, 𝐵) ℎ−→
ℎ′

(𝑌, 𝐶)

such that 𝑔(𝐴) = 𝑔′(𝐴) = 𝐵, ℎ(𝐵) = ℎ′(𝐵) = 𝐶, 𝑔 ≃ 𝑔′rel𝐴 and ℎ ≃ 𝑔′rel𝐵. Then, ℎ ◦ 𝑔 ≃ ℎ′ ◦ 𝑔′rel𝐴.

Proof. Let 𝐺 : 𝑔 → 𝑔′ and 𝐻 : ℎ → ℎ′ be the homotopies. The homotopy 𝐾 : ℎ ◦ 𝑔 → ℎ′ ◦ 𝑔′ is defined naturally as a
composition of 𝐻 and 𝐺.

𝐾 (𝑤, 𝑡) = 𝐻 (𝐺 (𝑤, 𝑡), 𝑡).

Check that (i) 𝐾 (𝑤, 0) = ℎ ◦ 𝑔(𝑤), (ii) 𝐾 (𝑤, 1) = ℎ′ ◦ 𝑔′(𝑤), and (iii) for all 𝑎 ∈ 𝐴, 𝐾 (𝑎, 𝑡) = ℎ ◦ 𝑔(𝑎) = ℎ′ ◦ 𝑔′(𝑎).

Typically, we will only care about the case where 𝐴 is a point.

Definition 1.5. A pointed space is a pair (𝑋, 𝑥0) where 𝑋 is a topological space and 𝑥0 a point in 𝑋 . The point 𝑥0 is referred
to as the basepoint. If (𝑋, 𝑥0) and (𝑌, 𝑦0) are pointed spaces, 𝑓 : 𝑋 → 𝑌 is a pointed map if 𝑓 (𝑥0) = 𝑦0.
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Let [𝑋,𝑌 ] denote the homotopy equivalence classes of pointed maps from 𝑋 to 𝑌 . It is convenient to omit the basepoint
from our notation: we will see that the objects we study depend only on path-connected components, and not the basepoint.

Definition 1.6 (Homotopy groups). The set 𝜋𝑛 (𝑌, 𝑦0) = [𝑆𝑛, 𝑌 ], where the basepoint of 𝑆𝑛 is (1, 0, · · · , 0) is the 𝑛th homotopy
group of 𝑌 .

When 𝑛 = 1, we call 𝜋1(𝑌, 𝑦0), or simply 𝜋1(𝑌 ), the fundamental group.

1.2 The group structure of the fundamental group

It does not make sense to call an object a group unless it is one. The correct way to visualize 𝜋1(𝑌, 𝑦0) is as homotopy
equivalence classes of loops in 𝑌 that begin and end at 𝑦0. In Figure 1, we said a closed curve was a map 𝛾 : [0, 1] → 𝑌

such that 𝛾(0) = 𝛾(1). Instead of identifying the endpoints 0 and 1 in the image of 𝛾, we can identify them in the domain.
Identifying the endpoints of [0, 1] gives us the circle 𝑆1, so a closed curve, or a loop, is also a map 𝛾 : 𝑆1 → 𝑌 . This is a
very useful correspondence and we will make use of both notions of the domain. For example, when we want to define a
homotopy 𝐻 between two loops, it will be convenient to think of the domain as [0, 1]. When we want to study properties of
a loop 𝑓 , we will think of the domain as 𝑆1. (This is only a general heuristic: what domain we choose will depend heavily on
what we are trying to achieve.)

Figure 4: Each pointed map 𝑓 : 𝑆1 → 𝑌 is a loop in 𝑌

Two loops are homotopy equivalent if one can be continuously deformed onto the other, like in Figure 1. We multiply
elements of 𝜋1(𝑌, 𝑦0) by concatenating the corresponding loops. The element 𝑓 · 𝑔 corresponds to first traversing the loop 𝑓 ,
then 𝑔. Formally, thinking of 𝑓 , 𝑔 as maps [0, 1] → 𝑌

𝑓 · 𝑔(𝑠) =
{
𝑓 (2𝑠), 0 ≤ 𝑠 ≤ 1/2
𝑔(2𝑠 − 1), 1/2 ≤ 𝑠 ≤ 1.

As will often be the case with several of these operations,we have to check that this is well-defined: see Exercise 1.
Now we are ready to check that the fundamental group is, in fact, a group.

Theorem 1.7. The fundamental group 𝜋1(𝑌, 𝑦0) is a group under the operation [ 𝑓 ] · [𝑔] = [ 𝑓 · 𝑔].

Proof. Step 1: the identity
The identity element is the simplest map we can think of. Let 𝑐 : 𝑆1 → 𝑌 be the constant map 𝑐(𝑥) = 𝑦0 for all 𝑥 ∈ 𝑆1.

Then, for any map 𝑓 : 𝑆1 → 𝑌 , define a homotopy 𝐻 from 𝑓 to 𝑐 · 𝑓 by

𝐻 (𝑠, 𝑡) =

𝑦0 2𝑠 ≤ 𝑡,
𝑓

(
2𝑠−𝑡
2−𝑡

)
2𝑠 ≥ 𝑡.

Check that 𝐻 (𝑠, 0) = 𝑓 (𝑠) and 𝐻 (𝑠, 1) = 𝑐 · 𝑓 (𝑠). How do you modify this construction to get a homotopoy 𝐻 ′ from 𝑓 to
𝑓 · 𝑐. This shows that 𝑐 is a two-sided identity in 𝜋1(𝑌 ).

Step 2: associativity
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I will present the homotopy showing that ( 𝑓 · 𝑔) · ℎ ≃ 𝑓 · (𝑔 · ℎ), and leave the tedious task of verification to the reader.

𝐻 (𝑠, 𝑡) =


𝑓

(
4𝑠
2−𝑡

)
4𝑠 ≤ 2 − 𝑡,

𝑔(4𝑠 + 𝑡 − 2) 2 − 𝑡 ≤ 4𝑠 ≤ 3 − 𝑡,
ℎ

(
4𝑠+𝑡−3

1+𝑡

)
3 − 𝑡 ≤ 4𝑠.

Step 3: inverses
Given 𝑓 : [0, 1] → 𝑌 , define 𝑓 −1 by 𝑓 −1(𝑠) = 𝑓 (1 − 𝑠). Intuitively, 𝑓 −1 traverses the same loop as 𝑓 , but in the opposite

direction. Define a homotopy 𝐻 from 𝑐 to 𝑓 · 𝑓 −1,

𝐻 (𝑠, 𝑡) =


𝑓 (2𝑠𝑡) 0 ≤ 𝑠 ≤ 1/2
𝑓 (2(1 − 𝑠)𝑡) 1/𝑠 ≤ 𝑠 ≤ 1
.

Since ( 𝑓 −1)−1 = 𝑓 , the same construction gives us a homotopy from 𝑐 to 𝑓 −1 · 𝑓 .

The most important fundamental group to remember is 𝜋1(𝑆1) = Z. We will see a short proof of this later using heavier
machinery, because trying to prove it directly from the definition is longer and more painful. Here is a handwave-y argument:
the only nontrivial loop is the circle itself, which is a rotation by 2𝜋. All other loops are simply concatentations of this loop
by itself, namely integer multiples of the rotation.

The fundamental group (as we will see during our time with homotopy) captures several properties of the initial space,
as exemplified by the following proposition.

Proposition 1.8. Let 𝑓 : 𝑋 → 𝑌 be a pointed map. Define 𝑓# : 𝜋1(𝑋) → 𝜋1(𝑌 ) by 𝑓# [𝛾] = [ 𝑓 ◦ 𝛾]1. Then, 𝑓# is a group
homomorphism.

Proof. We need to show that if 𝛾 ≃ 𝜔, then 𝑓#◦𝛾 ≃ 𝑓#◦𝜔, so that 𝑓# is well-defined. This is an easy application of Lemma 1.4
with (𝑊, 𝐴) = (𝑆1, (1, 0)). Next, to see that 𝑓# respects the group operation, note that 𝑓 ◦ (𝜔 · 𝛾) = ( 𝑓 ◦ 𝜔) · ( 𝑓 ◦ 𝛾) by an
easy exercise in definition-chasing (see Exercise 2). So,

𝑓# [𝜔 · 𝛾] = [ 𝑓 ◦ (𝜔 · 𝛾)] = [( 𝑓 ◦ 𝜔) · ( 𝑓 ◦ 𝛾)] = [ 𝑓 ◦ 𝜔] · [ 𝑓 ◦ 𝛾] = 𝑓# [𝜔] · 𝑓# [𝛾] .

Remark 1.9. For the category theorist, the association (𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥0) with 𝑓 → 𝑓# is a functor from the category of
pointed topological spaces to the category of groups.

We have been very liberal with omitting the basepoint in our notation. To what extent does the basepoint matter to the
fundamental group?

Proposition 1.10. The group 𝜋1(𝑌, 𝑦0) depends only on the path-connected component of 𝑌 containing 𝑦0.

(i) If 𝑌0 is the path component containing 𝑦0, then 𝜋1(𝑌, 𝑦0) � 𝜋1(𝑌 ′, 𝑦0).

(ii) If 𝑦0 and 𝑦1 are in the same path component, then 𝜋1(𝑌, 𝑦0) � 𝜋1(𝑌, 𝑦1).

Proof. The proof of (i) is not complicated. There is a one-to-one correspondence between pointed maps 𝑓 : 𝑆1 → (𝑌, 𝑦0) and
𝑓 : 𝑆1 → (𝑌 ′, 𝑦0), the correspondence being that they are the same. Any map 𝑓 : 𝑆1 → 𝑌 must lie in one path component.

The proof of (ii) involves a little more work. Let 𝛼 : [0, 1] → 𝑌 be a path from 𝑦0 to 𝑦1. Given a loop 𝑓 at 𝑦0, we can
construct a loop at 𝑦1 by travelling from 𝑦1 to 𝑦0 along 𝛼−1, traversing 𝑓 , then travelling back to 𝑦1 along 𝛼. (See Figure 5.)

1Pronounced ‘f-sharp’.
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Figure 5: Creating a loop at 𝑦1.

Define 𝜙 : 𝜋1(𝑌, 𝑦0) → 𝜋1(𝑌, 𝑦1) by [ 𝑓 ] → [𝛼 · 𝑓 · 𝛼−1], where 𝛼 · 𝑓 · 𝛼−1 denotes the concatenated map [0, 1] → 𝑌 .
Any homotopy 𝑓 → 𝑔 extends naturally to a homotopy from 𝛼 · 𝑓 ·𝛼−1 to 𝛼 · 𝑔𝛼−1, so 𝜙 is well-defined. (Work out the details
in Exercise 3.)

𝜙 is a homomorphism.

𝜙( [ 𝑓 ] [𝑔]) = [𝛼 · 𝑓 · 𝛼−1] [𝛼 · 𝑔 · 𝛼−1] = [𝛼 · 𝑓 · (𝛼−1 · 𝛼 · 𝑔 · 𝛼−1] = [𝛼 · 𝑓 𝑔 · 𝛼−1],

since 𝛼 · 𝛼−1 is homotopic to the identity. (This was step 3 in the proof of Theorem 1.7.)

𝜙 is injective. For any 𝑓 , 𝑔 ∈ 𝜋1(𝑌, 𝑦0). Let 𝑐0 and 𝑐1 be the constant loops at 𝑦0 and 𝑦1 respectively. If 𝜙[ 𝑓 ] = [𝑐1], then

𝑓 ≃ 𝑐0 𝑓 𝑐0 ≃ 𝛼−1𝛼 · 𝑓 · 𝛼−1𝛼 ≃ 𝛼−1𝑐1𝛼 ≃ 𝛼−1𝛼 ≃ 𝑐0.

The reader should verify that each ≃ does, in fact, indicate a homotopy equivalence using the fact that 𝜋1(𝑌, 𝑦0) and 𝜋1(𝑌, 𝑦1)
are well-defined groups.

𝜙 is surjective. For any [𝑔] ∈ 𝜋1(𝑌, 𝑦1), 𝑓 = 𝛼−1𝑔𝛼 is a loop centered at 𝑦0, and 𝜙( [ 𝑓 ]) = [𝑔].

The fundamental group is preserved by direct products.

Proposition 1.11. Let 𝑋 =
∏

𝑖∈𝐼 𝑋𝑖 . For any 𝑥 = (𝑥𝑖)𝑖∈𝐼 ∈ 𝑋 , 𝜋1(𝑋, 𝑥) �
∏

𝑖∈𝐼 𝜋1(𝑋𝑖 , 𝑥𝑖), i.e. the fundamental group is
preserved by direct products.

Proof. There is an obvious choice for the group isomorphism. Each projection 𝑝𝑖 : 𝑋 → 𝑋𝑖 induces a group homomorphism
𝑝𝑖# : 𝜋1(𝑋, 𝑥) → 𝜋1(𝑋𝑖 , 𝑥𝑖). Let 𝜙 : 𝜋1(𝑋, 𝑥) →

∏
𝑖∈𝐼 𝜋1(𝑋𝑖 , 𝑥𝑖) be the extension 𝜙( [ 𝑓 ]) = ∏

𝑖∈𝐼 𝑝𝑖# [ 𝑓 ]. The map 𝜙 is a
group homomorphism because each map 𝑝𝑖# is.

𝜙 is injective. Suppose 𝜙[ 𝑓 ] is the identity. Then, there are homotopies 𝐻𝑖 : 𝑝𝑖# [ 𝑓 ] → 𝑐𝑖 for each 𝑖 ∈ 𝐼, where 𝑐𝑖 is (as
always) the constant loop at 𝑥𝑖 . The product homotopy 𝐻 (𝑧, 𝑡) =

(
𝐻𝑖 (𝑧, 𝑡)

)
𝑖∈𝐼

defines a homotopy from 𝑓 to (𝑐𝑖)𝑖∈𝐼 , the
constant loop at 𝑥 ∈ 𝑋 . (See Exercise 4.)

We will soon fall into the practice of omitting the basepoint from our notation. This poses a slight notational problem for
the identity element of the fundamental group. The letter 𝑐 will be reserved for the constant loop, and we will use subscripts
to indicate which space we are referring to. For example, when we only consider one or two pointed spaces, say 𝑋 and 𝑌 , we
will call their respective loops 𝑐𝑋 and 𝑐𝑌 . However, as in the previous proposition when we consider indexed spaces (𝑋𝑖)𝑖∈𝐼 ,
it is convenient to refer to their loops as 𝑐𝑖 , thereby avoiding a dreaded double subscript.

Intuitively, we would like a sphere of radius 2 to be the same as a sphere of radius 1: they have exactly the same loops,
only at different scales. How do we formalize this notion?
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Definition 1.12. A pointed map 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence if there is a pointed map 𝑔 : 𝑌 → 𝑋 such that
𝑔 ◦ 𝑓 ≃ 1𝑋 and 𝑓 ◦ 𝑔1𝑌 , the identity maps on 𝑋 and 𝑌 respectively. Two spaces 𝑋 and 𝑌 are homotopy equivalent if there is a
homotopy equivalence between them.

Example 1.13.

(i) Any homeomorphism between two spaces is a homotopy equivalence. This is the special case when 𝑓 ◦ 𝑔 and 𝑔 ◦ 𝑓
are equal to the identity maps.

(ii) The spaceR𝑛 is homeomorphic to a single point, say {𝑎}. Define 𝑓 : R𝑛 → {𝑎}, as the constant map, and 𝑔 : {𝑎} → R𝑛
by 𝑔(𝑎) = 𝑥, where 𝑥 is our chosen basepoint. Clearly 𝑓 ◦ 𝑔 = 1{𝑎}. Conversely, require that any two maps R𝑛 → R𝑛
are homotopic by Example 1.2, so 𝑔 ◦ 𝑓 ≃ 1R𝑛 .

(iii) The inclusion map from 𝑆1 to C \ {0} is a homotopy equivalence. Intuitively, we expand the hole at 0 in C \ {0} to a
circle, and compress the rest of the plane onto the circle. Formally, 2 we define a retraction from C \ {0} to 𝑆1. Define
𝑟 : C \ {0} → 𝑆1 by 𝑟 (𝑧) = 𝑧

| |𝑧 | | . The composition 𝑟 ◦ 𝑖 is the identity on 𝑆1. The other composition 𝑖 ◦ 𝑟 is homotopy
equivalent to the identity on C \ {0} via the homotopy

𝐻 (𝑧, 𝑡) = 𝑧

1 + 𝑡 ( | |𝑧 | | − 1) .

Theorem 1.14. If 𝑋 and 𝑌 are homotopy equivalent, then 𝜋1(𝑋) = 𝜋1(𝑌 ).

Proof. Let 𝑓 : 𝑋 → 𝑌 be a homotopy equivalence with inverse 𝑔 : 𝑌 → 𝑋 . Recall that 𝑓# : 𝜋1(𝑋) → 𝜋1(𝑌 ) is a group
homomorphism. Given any loop [𝛼] ∈ 𝜋1(𝑋), 𝑔# 𝑓# [𝛼] = [𝑔 ◦ 𝑓 ◦ 𝛼] = [1𝑋 ◦ 𝛼] = [𝛼]. The same argument shows that 𝑓#𝑔#

is the identity on 𝜋1(𝑌 ). We have proven a little more: every homotopy equivalence induces an isomorphism of fundamental
groups.

Exercises

Exercise 1. Let 𝑓 and 𝑔 be pointed maps from 𝑆1 to𝑌 . If 𝑓 ′ ≃ 𝑓 and 𝑔′ ≃ 𝑔 are homotopic as pointed maps, then 𝑓 ·𝑔 ≃ 𝑓 ′ ·𝑔′,
with the group operation as above. 3

Exercise 2. Show that 𝑓 ◦ (𝜔 · 𝛾) = ( 𝑓 ◦ 𝜔) · ( 𝑓 ◦ 𝛾) in the proof of Proposition 1.8.

Exercise 3. Let 𝛼 : [0, 1] → 𝑌 be a path from 𝑦0 to 𝑦1 and 𝑓 a loop at 𝑦0, as in the proof of Proposition 1.10. Define the map
𝛼 · 𝑓 · 𝛼−1 : [0, 1] → 𝑌 and verify that it is a loop at 𝑦1. If 𝐻 : 𝑓 → 𝑔 is a homotopy relative to 𝑦0, construct a homotopy
from 𝛼 · 𝑓 · 𝛼−1 → 𝛼 · 𝑔 · 𝛼−1.

Exercise 4. Show that the product homotopy 𝐻 (𝑧, 𝑡) from the proof of Proposition 1.11 is in fact a homotopy from 𝑓 to
(𝑐𝑖)𝑖∈𝐼 . You will need to use the construction of each 𝑝𝑖# from Proposition 1.8.

1.3 Contractibility

The last two examples in Example 1.13 showcase two important types of homotopy equivalences. Example (ii) shows
contractibility to a point, while example (iii) is a deformation retraction onto a subspace. Contractibility is a special case of
a deformation retraction, but noteworthy enough to merit a separate definition.

Definition 1.15. A pointed space (𝑋, 𝑥0) is contractible if 1𝑋 ≃ 𝑐𝑋, i.e. the identity map on 𝑋 is homotopy equivalent to the
constant map 𝑥0.

2Or, unintuitively.
3Hint: In the proof of Proposition 1.3, we concatenated two homotopies by compressing them along the second coordinate. In this case, given

homotopies 𝐹 : 𝑓 → 𝑓 ′ and 𝐺 : 𝑔 → 𝑔′, concatenate them by compressing along the first coordinate.
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Remark 1.16. Be careful! This is the definition of contractibility for pointed spaces. An arbitrary space 𝑋 is contractible if
the identity is homotopy equivalent to a constant map, but not necessarily through a basepoint-preserving homotopy. At the
end of this section, we will see an example of a space that is (weakly) contractible to a point, but not (strongly) contractible
as a pointed space with that basepoint.

Think of a contraction literally: you squeeze R𝑛 to a single point. The disk 𝐷𝑛, for example, is contractible. Let 𝑝 be the
center of the disk and also its basepoint. The map 𝐻 : 1𝐷𝑛 → 𝑐𝑝 by 𝐻 (𝑥, 𝑡) = 𝑡 𝑝 + (1 − 𝑡)𝑥 is a homotopy.

In general, we say 𝑓 : 𝑆1 → 𝑋 is null homotopic if it is homotopic to the constant map. A space 𝑋 is then contractible if
every loop is null homotopic. Of course, since homotopy is an equivalence relation, this means that all loops are homotopic.

Proposition 1.17. If 𝑋 is contractible and 𝑌 is any topological space, then any two maps from 𝑌 → 𝑋 are homotopic.
Further, 𝑋 is contractible if and only if 𝑋 is homotopic to a point.

Proof. The first statement follows immediately from the definition: if 𝑓 : 𝑌 → 𝑋 is any map, then 𝑓 = 𝑓 ◦ 1𝑋 ≃ 𝑓 ◦ 𝑐𝑋,
the constant map from 𝑌 to 𝑋 . If 𝑋 is contractible, then 𝑐𝑋 : 𝑋 → {𝑥0} and the embedding of the basepoint 𝑖 : {𝑥0} → 𝑋

are homotopy equivalences. For the easy direction, 𝑖 ◦ 𝑐𝑋 is the identity map on {𝑥0}. For the other (but still easy) direction,
𝑐𝑋 ◦ 𝑖 = 𝑐𝑋 ≃ 1𝑋 since 𝑋 is contractible. Conversely, suppose 𝑋 is homotopy equivalent to a point: without loss of generality,
the point {𝑥0}. Then, there exist homotopy equivalences 𝑓 : 𝑋 → {𝑥0} and 𝑔 : {𝑥0} → 𝑋 . Of course, since we only care
about basepoint-preserving maps, 𝑔 : {𝑥0} → 𝑋 must be the embedding 𝑖 : {𝑥0} → 𝑋 , and 𝑓 can only be the constant
map 𝑐𝑋 : 𝑋 → {𝑥0}. The composition 𝑐𝑋 ◦ 𝑖 = 𝑐𝑋 is homotopy equivalent to 1𝑋, which is exactly the statement that 𝑋 is
contractible.

Example 1.18. Any convex subset 𝑋 of R𝑛 is contractible to any point 𝑥0 ∈ 𝑋 . The homotopy from 1𝑋 to 𝑐𝑋 is simply
𝐻 (𝑥, 𝑡) = 𝑡𝑥0 + (1 − 𝑡)𝑥. In particular, R𝑛 is contractible to any point in the space.

We can use contractibility to answer an extension problem: when can we lift a map 𝑓 : 𝑆𝑛 → 𝑌 to a map 𝑓 : 𝐷𝑛+1 → 𝑌?

Corollary 1.19. Let 𝑓 : 𝑆𝑛 → 𝑌 be a pointed map. Then, 𝑓 extends to a map 𝑓 : 𝐷𝑛+1 → 𝑌 if and only if 𝑓 ≃ 𝑐𝑌 .

Proof. Let 𝑖 : 𝑆𝑛 → 𝐷𝑛+1 be the inclusion map, and suppose 𝑓 extends to a map 𝑓 on 𝐷𝑛+1 so that 𝑓 = 𝑓 ◦ 𝑖. Since 𝐷𝑛+1 is
contractible, 𝑓 ≃ 𝑐𝑌 , so 𝑓 is also homotopy equivalent to a constant map.

Conversely, suppose 𝐻 is a homotopy from 𝑐𝑌 to 𝑓 . Define the extension

𝑓 (𝑥) =

𝑦0, 0 ≤ ||𝑥 | | ≤ 1/2;
𝐻

(
𝑥

| |𝑥 | | , 2| |𝑥 | | − 1
)
, 1/2 ≤ ||𝑥 | | ≤ 1.

Figure 6: Extending the map 𝑓 to 𝐷𝑛+1
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We can use this result to produce a new proof of the fact that homotopy equivalence induces an isomorphism of
fundamental groups.

Definition 1.20. A space 𝑌 is simply connected if it is path connected and 𝜋1(𝑌 ) = 1.

Corollary 1.21. Suppose 𝑓 , 𝑔 : 𝐼 → 𝑌 are maps such that 𝑓 (0) = 𝑔(0) and 𝑓 (1) = 𝑔(1). If 𝑌 is simply connected, then
𝑓 ≃ 𝑔rel{0, 1}.

Proof. Since 𝑓 (0) = 𝑔(0) and 𝑓 (1) = 𝑔(1), this defines a map ℎ on 𝜕 (𝐼 × 𝐼), where ℎ(𝑥, 0) = 𝑓 (𝑥), ℎ(𝑥, 1) = 𝑔(𝑥),
ℎ(0, 𝑦) = 𝑓 (0) and ℎ(1, 𝑦) = 𝑔(1).

Figure 7: The map ℎ.

Using a homeomorphism, we can identify 𝐼 × 𝐼 with 𝐷2 and 𝜕 (𝐼 × 𝐼) with 𝑆1. By the previous corollary, we can extend
this map to 𝑆1 if and only if the map ℎ is null homotopic. However, since 𝜋1(𝑌 ) = 1, ℎ must be null homotopic. The extension
of the map to 𝑆1 and its pullback to 𝐼 × 𝐼 gives us the homotopy from 𝑓 to 𝑔.

Theorem 1.22. Let 𝑓 , 𝑔 be maps (not necessarily pointed!) from 𝑋 to 𝑌 and 𝐻 a homotopy from 𝑓 to 𝑔. Set 𝑦0 = 𝑓 (𝑥0) and
𝑦1 = 𝑔(𝑥0), and let 𝛼 be the path 𝛼(𝑡) = 𝐻 (𝑥0, 𝑡) from 𝑦0 to 𝑦1. Then, the following diagram commutes

𝜋1(𝑌, 𝑦0)

𝜋1(𝑋, 𝑥0)

𝜋1(𝑌, 𝑦1)

𝛼∗

𝑓#

𝑔#

where 𝛼∗ is the isomorphism that sends [𝜔] ∈ 𝜋1(𝑌, 𝑦0) to [𝛼−1𝜔𝛼].

Proof. Given [𝜔] ∈ 𝜋1(𝑋, 𝑥0), we need to show that 𝛼∗ 𝑓# [𝜔] = 𝑔# [𝜔], i.e. 𝛼−1( 𝑓 ◦𝜔)𝛼 ≃ 𝑔 ◦𝜔 (this time as pointed maps).
We can define a map on 𝜕 (𝐼 × 𝐼) using the same trick as the previous corollary:

𝑐𝑦1

𝑔◦𝜔

𝛼−1 ( 𝑓 ◦𝜔)𝛼

𝑐𝑦1

Under the homeomorphism from 𝜕 (𝐼 × 𝐼) to 𝑆1 � 𝐼/{0, 1}, the oundary map becomes the concatenation [𝑐−1
𝑦1 𝛼

−1( 𝑓 ◦
𝜔)𝛼𝑐𝑦1 (𝑔 ◦ 𝜔)−1] = [𝛼−1( 𝑓 ◦ 𝜔)𝛼(𝑔 ◦ 𝜔)−1].
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𝑋 × 𝐼 𝑌

𝑆1 × 𝐼

𝐻

𝜔×1

The composition in the above diagram tells us that 𝑓 ◦ 𝜔 is homotopic to 𝑔 ◦ 𝜔.

As a corollary, if 𝑓 : 𝑋 → 𝑌 is a homotopy equivalence, then 𝑓# : 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑦0) is a group isomorphism. If 𝑔 is
a homotopy inverse to 𝑓 , let 𝐻 be the homotopy from 𝑔 𝑓 to 1𝑋 and 𝛼(𝑡) = 𝐻 (𝑥0, 𝑡). The theorem tells us that the diagram
commutes:

𝜋1(𝑋, 𝑥0)

𝜋1(𝑋, 𝑥0)

𝜋1(𝑋, 𝑔 𝑓 (𝑥0))

𝛼∗

(1𝑋)#

(𝑔 𝑓 )#

so (𝑔 𝑓 )# = 𝑔# 𝑓# = 𝛼∗ is an isomorphism. By the same reasoning, 𝑓#𝑔# is an isomorphism. In this case, 𝑓# and 𝑔# must each
be isomorphisms.

Corollary 1.23. If 𝑋 is contractible, then 𝑋 is simply connected.

Proof. Let 𝐻 be a homotopy from 1𝑋 to 𝑐𝑋. For any 𝑦 ∈ 𝑋 , define 𝜔 : 𝐼 → 𝑋 by 𝜔(𝑡) = 𝐻 (𝑦, 𝑡). This is a path from 𝑦 to 𝑥0,
so 𝑋 is path connected. Since 𝑋 is homotopy equivalent to a point {𝑥0}, 𝜋1(𝑋, 𝑥0) = 𝜋1({𝑥0}) = 1.

In general, the contractibility of a space 𝑋 is not independent of the choice of basepoint {𝑥0}.

Figure 8: The comb space

Consider the comb space as a subspace of R2, with a vertical copy of the unit interval above each point (1/𝑛, 0) on the
𝑥-axis. More formally, the comb space is the subset 𝑋 of 𝐼 × 𝐼, with 𝑋 = (𝐼 × {0}) ∪ ({0} × 𝐼) ∪

(
∪𝑛 ({1/𝑛} × 𝐼

)
.

This is a good moment to pause for a sanity check. The comb space is homotopic to a point, but does not deformation-
retract onto any basepoint. (see here for a discussion of this fact). But didn’t we just prove that if a space is homotopic to
a point, then it deformation retracts to its basepoint? This is a problem with our definition of contractibility. In general,
contractibility does not require being “relative to the basepoint”, unlike deformation retractions.
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2 Computing fundamental groups

2.1 The fundamental group of 𝑆1

This presentation is based on section 1.1 of Hatcher. The goal is to get our hands a little dirty computing one fundamental
group. All the other fundamental groups will be computed using either Van Kampen’s theorem or covering spaces.

Theorem 2.1. The map 𝜙 : Z→ 𝜋 (𝑆
1) that sends 𝑛 to the homotopy class of the loop 𝜔𝑛 (𝑡) = (cos(2𝜋𝑛𝑡), sin(2𝜋𝑛𝑡)) is an

isomorphism.

Corollary 2.2 (The fundamental theorem of algebra). Every nonconstant polynomial in C[𝑋] has a root in C.

Proof. Suppose 𝑝(𝑧) = 𝑧𝑛 + 𝑎𝑛−1𝑧
𝑛−1 + · · · + 𝑎1𝑧 + 𝑎0. If 𝑝 has no roots in C, then for every 𝑟 ≥ 0 and 𝑡 ∈ [0, 1],

𝑓𝑟 (𝑡) =
𝑝(𝑟𝑒2𝜋𝑖𝑡 )/𝑝(𝑟)
|𝑝(𝑟𝑒2𝜋𝑖𝑡)/𝑝 (𝑟) |

is well-defined. For fixed 𝑟, this defines a loop in 𝑆1 based at 1. The loops ( 𝑓𝑟 )𝑟≥0 are homotopy equivalent (why?). The loop
𝑓0 is the constant loop, so the class [ 𝑓𝑟 ] is trivial in 𝜋1(𝑆1).

Choose 𝑟 > max( |𝑎0 | + · · · + |𝑎𝑛−1 |, 1). Then, if |𝑧 | = 𝑟 , |𝑧𝑛 | > ( |𝑎0 | + · · · + |𝑎𝑛−1 |) |𝑧𝑛−1 | ≥ |𝑎0 + · · · + 𝑎𝑛−1𝑧
𝑛−1 |. It

follows that for each 0 ≤ 𝑠 ≤ 1, the polynomial 𝑝𝑠 (𝑧) = 𝑧𝑛 + 𝑠(𝑎𝑛−1𝑧
𝑛−1 + · · · + 𝑎1𝑧 + 𝑎0) has no roots on the circle |𝑧 | = 𝑟 .

We can define 𝑓𝑠,𝑟 (𝑡) analogously for the polynomials 𝑝𝑠 (𝑧). As 𝑠 goes from 1 to 0, this defines a homotopy from 𝑓𝑟 to the
loop 𝜔𝑛 (𝑡) = 𝑒2𝜋𝑖𝑛𝑡 . Since 𝑝 is nonconstant, 𝑛 ≥ 1 and 𝜔𝑛 is a nontrivial loop in 𝜋1(𝑆1), a contradiction.

Corollary 2.3 (Two-dimensional Brouwer fixed point theorem). Every continuous map ℎ : 𝐷2 → 𝐷2 has a fixed point.

2.2 Van Kampen’s theorem

Van Kampen’s theorem is one of two powerful tools to compute homotopy groups.

Theorem 2.4 (Van Kampen, version 1). Let 𝑈 and 𝑉 be connected open subsets of 𝑋 such that 𝑈 ∪ 𝑉 = 𝑋 and 𝑈 ∩ 𝑉 is
nonempty, connected, and contains the basepoint. Let 𝑖𝑈 : 𝑈 ∩ 𝑉 → 𝑈, 𝑖𝑉 : 𝑈 ∩ 𝑉 → 𝑉 , 𝑗𝑈 : 𝑈 → 𝑋 , and 𝑗𝑉 : 𝑉 → 𝑋 be
the inclusion maps. Then,

𝜋1(𝑋) = 𝜋1(𝑈) ∗𝜋1 (𝑈∩𝑉) 𝜋1(𝑉),

where ∗ denotes the amalgamated free product.

The amalgamated free product is essentially a noncommutative version of the direct product. In the most general case,
suppose we have groups (𝐺𝛼) and some group 𝐴 equipped with homomorphisms 𝑓𝛼 : 𝐴 → 𝐺𝛼. The amalgamated free
product with respect to 𝐴 is denoted by 𝐺 = ∗𝛼𝐺𝛼 and constructed in the following complicated way. The elements of 𝐺
are reduced words 𝑔1 · · · 𝑔𝑚, where each 𝑔𝑖 is in a different group 𝐺𝛼. The group operation ◦ is concatenation, but we are
allowed to multiply letters from the same group.

That is, if 𝑔 ∈ 𝐺𝛼, then 𝑔 ◦𝑔 is the letter 𝑔2 ∈ 𝐺. This is the free product of the groups𝐺𝛼. To amalgamate it, we quotient
out by the relations

𝑔 𝑓𝛼 (𝑎)ℎ = 𝑔 𝑓𝛽 (𝑎)ℎ.

if 𝑔 ∈ 𝐺𝛼, ℎ ∈ 𝐺𝛽 , and 𝑎 ∈ 𝐴, When the homomorphisms 𝑓𝛼 are all trivial homomorphisms (like when 𝐴 is the trivial
group), this is the free product of the groups 𝐺𝛼. For example, Z ∗1 Z is the free group on two elements.

A sequence of homomorphisms 𝜑𝛼 : 𝐺𝛼 → 𝐻 induces a homomorphism Φ : ∗𝛼𝐺𝛼 → 𝐻 by Φ(𝑔1 · · · 𝑔𝑚) =

𝜑𝛼1 (𝑔1) · · · 𝜑(𝛼𝑚) (𝑔𝑚).

Theorem 2.5 (Van Kampen, general version). Let (𝑈𝛼) be a collection of connected open sets that cover 𝑋 such that
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(i) each𝑈𝛼 contains the basepoint 𝑥0, and

(ii) the pairwise intersections𝑈𝛼 ∩𝑈𝛽 are nonempty and connected.

Then, the homomorphism from the (non-amalgamated!) free product Φ : ∗𝛼𝜋1(𝑈𝛼) → 𝑋 induced by the inclusion maps is a
homomorphism.

If every triple intersection 𝑈𝛼 ∩ 𝑈𝛽 ∩ 𝑈𝛾 , then ker(Φ) is the normal subgroup generated by 𝑖𝛼𝛽 (𝜔)𝑖𝛽𝛼 (𝜔)−1, where
𝑖𝛼𝛽 : 𝜋1(𝑈𝛼 ∩𝑈𝛽) → 𝜋1(𝑈𝛼) and 𝑖𝛽𝛼 : 𝜋1(𝑈𝛼 ∩𝑈𝛽) → 𝜋1(𝑈𝛽) are induced by the inclusion maps.

This is pretty complicated, and probably not typically a result you will use. Instead, a fairly standard induction argument
gets you a more useful generalization.

Theorem 2.6 (Van Kampen, inductive). Let𝑈1, · · · ,𝑈𝑛 be open connected sets that cover 𝑋 and each contain the basepoint.
If each pairwise intersection𝑈𝑖 ∩𝑈 𝑗 is nonempty and connected,

𝜋1(𝑋) = 𝜋1(𝑈1) ∗𝜋1 (𝑈1∩𝑈2) 𝜋1(𝑈2) ∗𝜋1 ( (𝑈1∪𝑈2)∩𝑈3) 𝜋1(𝑈3) · · · ∗(𝜋1 (𝑈1)∪···𝜋1 (𝑈𝑛−1))∩𝑈𝑛) 𝜋1(𝑈𝑛).

2.3 Applications of Van Kampen

Example 2.7 (Fundamental group of a wedge sum.). Let (𝑋𝛼, 𝑥𝛼) be a collection of spaces such that each 𝑥𝛼 is the
deformation retract of an open neighborhood 𝑉𝛼 in 𝑋𝛼. Let 𝑈𝛼 = 𝑋𝛼

∨
𝛽≠𝛼𝑉𝛽 . The sets 𝑈𝛼 cover

∨
𝑋𝛼, and the pairwise

and triple intersections deformation retract to the basepoint. Further, the spaces 𝑈𝛼 ∩ 𝑈𝛽 are contractible and have trivial
fundamental group, so the homomorphisms 𝑖𝛼𝛽 are all trivial. Van Kampen’s theorem now implies that

∗𝛼𝜋1(𝑋𝛼) � 𝜋1(
∨
𝛼

𝑋𝛼).

Example 2.8 (Fundamental group of a graph.). Let 𝐺 be a connected graph with 𝑛 vertices and 𝑚 edges. I claim that
𝜋1(𝐺) is the free group on 𝑚 − 𝑛 + 1 elements.

Let 𝑇 be a spanning tree of 𝐺, so 𝑇 has (𝑛 − 1) vertices. For each edge 𝑒𝑖 ∉ 𝑇 , let 𝑈𝑖 be an open neighborhood of 𝑇
that contains 𝑒𝑖 (but no other extra edges). Then,𝑈𝑖 deformation retracts to 𝑇 . The connected open sets𝑈𝑖 cover 𝐺 and their
pairwise intersections deformation retract to 𝑇 , which is contractible. So, Van Kampen’s theorem tells us

𝜋1(𝑋) = ∗𝑒𝑖∉𝑇Z,

which is the free group generated by 𝑚 − 𝑛 + 1 elements.

3 An introduction to homology

While the homotopy groups are easy to define, they are typically difficult to compute. Even the higher homotopy groups of
𝑛-spheres are notoriously difficult to compute. The homology groups, on the other hand, are much easier to compute because
they usually terminate in a chain of zeroes. They also have the added advantage of being abelian.

Figure 9: The triangulation of 𝐷2
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Figure 10: The 0–, 1–, and 2–simplices
.

The 𝑛th homotopy group tells you about 𝑛-dimensional holes in your space by looking at homotopy classes of loops.
The homology groups do something similar: they identify holes by looking at triangulations of the space. For example,
we can think of the disk 𝐷2 as a (filled-in) triangle, which is contractible, so 𝐷2 has no holes in any dimension. (They are
homeomorphic, after all.) Of course, once we start looking at higher-dimensional objects, like 𝐷3, we have to use uncountably
many two-dimensional triangles to cover the space, and this becomes meaningless. This motivates our use of the 𝑛-simplex:

Definition 3.1. The standard 𝑛-simplex, denoted Δ𝑛, is the convex hull of the standard basis vectors in R𝑛 and the origin with
a linear order on its vertices determined by the coordinates.

In general, an 𝑛-simplex in R𝑛 is a convex hull of 𝑛 + 1 affinely independent vectors in R𝑛 equipped with a linear order.
While we do not need to use the linear order for CW-complexes (yet), we will need it to define Δ-complexes, and to construct
the homology groups. Some facts about 𝑛-simplices:

(1) The convex hull of 𝑚 + 1 vertices, where 𝑚 ≤ 𝑛, is called an 𝑚-face of the 𝑛-simplex. Every 𝑚-face is an 𝑚-simplex.

(2) The boundary 𝜕Δ𝑛 is the union of the (𝑛 − 1)-faces.

(3) The 𝑚-faces are in one-to-one correspondence with the (𝑚 + 1)-sets of vertices.

(4) A 0-face is a vertex and a 1-face is an edge.

Now, for example, we can triangulate 𝐷3 via a homeomorphism to a tetrahedron. In general, the disk 𝐷𝑛 is homeomorphic to
the simplex Δ𝑛. A triangulation, loosely speaking, is a collection of maps from 𝑛-simplices to our space. For example, here are
two triangulations of 𝑆1. One identifies the vertices of Δ1 (the unit interval [0, 1]) with a single point Δ0. The other is simply
the homemorphism from 𝑆1 to the boundary of 𝜕 (Δ2), which consists of three 1-simplices (edges) and three 0-simplices
(vertices).

Figure 11: Two triangulations of 𝑆1

3.1 Complex? I find it quite simple, really

Since a collection of maps from simplices to a space 𝑋 produces a more complicated structure, we call 𝑋 a complex,
where the type of complex depends on the maps. The three types we will look at are

simplicial complex ⊆ Δ-complex ⊆ CW-complex.

We will repeatedly switch between thinking of the 𝑛-simplex as the standard 𝑛-simplex, and as the homemorphic space 𝐷𝑛,
so that the boundary of the 𝑛-simplex is homeomorphic to 𝑆𝑛−1.

13



3.1.1 CW–complexes

The easiest definition of a CW-complex is the inductive construction.

Definition 3.2. A CW-complex is a space 𝑋 formed in the following way.

1. Begin with a discrete space 𝑋0. (These are the points of 𝑋 equipped with the discrete topology.)

2. Suppose we have constructed 𝑋𝑛−1. Take a collection of maps 𝑓𝛼 : 𝑆𝑛−1 → 𝑋𝑛−1, for 𝛼 in some index set 𝐽𝑛. The
space 𝑋𝑛 is formed by taking the union of 𝑋𝑛−1 with 𝐽𝑛 copies of 𝐷𝑛,4 and taking the quotient by the equivalence
relation 𝑥 ∼ 𝑓𝛼 (𝑥). More precisely,

𝑋𝑛 =

(
𝑋𝑛−1 ∪

⋃
𝛼

𝐷𝑛
)
⧸∼.

3. If we stop the construction after finitely many steps, 𝑋 = 𝑋𝑛 for some 𝑛. Otherwise, we inductively perform this
construction for every 𝑛 ∈ N, and 𝑋 = ∪𝑛𝑋

𝑛. In the latter case, we equip 𝑋 with a weak topology: a set 𝐴 ⊂ 𝑋 is
closed if and only if 𝐴 ∩ 𝑋𝑛 is closed for every 𝑛 ∈ N.

Step two is the heart of the construction; the maps 𝑓𝛼 glue the boundaries of the 𝑛-simplices to the (𝑛 − 1)-simplices in
𝑋𝑛−1. Since the only restriction we have is that the 𝑓𝛼’s be continuous, this gluing does not have to be nice.

Definition 3.3. The interior of the disk 𝐷𝑛 (or the simplex Δ𝑛) is called an 𝑛-cell. When 𝑛 = 0, a 0-simplex is a 0-cell.

This is useful terminology because when we glue Δ𝑛 to 𝑋𝑛−1, we identify 𝜕 (Δ𝑛) with simplices in 𝑋𝑛−1, and what
remains is the 𝑛-cell, int(Δ𝑛).

Example 3.4.

(i) The sphere 𝑆𝑛 is formed by first taking a 0-cell, 𝑒0, and attaching Δ𝑛 to it by identifying the boundary of Δ𝑛 with the
single point 𝑒0.

(ii) We can also form the sphere 𝑆𝑛 with a finer structure by identifying it with the boundary 𝜕 (Δ𝑛).

(iii) Here is a non-example. We can write the sphere 𝑆𝑛 as a disjoint union of 0-cells, 𝑆𝑛 = ∪𝑥∈𝑆𝑛{𝑥}. This is not a
CW-complex, for the silly reason that it violates the first condition: 𝑆𝑛 is not a discrete space. More generally, this is
also why we have the third condition to prevent trivial complexes that are just the points of the space.

An equivalent way to define a CW-complex is by defining the gluing maps to act on all of 𝐷𝑛, not just its boundary.

Definition 3.5. A CW-complex is a space 𝑋 that can be formed in the following way.

1. Begin with a discrete space 𝑋0. (These are the points of 𝑋 equipped with the discrete topology.)

2. Suppose we have constructed 𝑋𝑛−1. We have a collection of maps 𝜎𝛼 : Δ𝑛 → 𝑋 , for 𝛼 in some index set 𝐽𝑛. Each 𝜎𝛼

is injective on the interior int(Δ𝑛), and the restriction to the boundary is a map 𝜎𝛼 : 𝜕 (Δ𝑛) → 𝑋𝑛−1. Define 𝑋𝑛 to be
the union of 𝑋𝑛−1 with 𝐽𝑛 copies of Δ𝑛, quotiented by the equivalence relation 𝑥 ∼ 𝑓𝛼 (𝑥). More precisely,

𝑋𝑛 =

(
𝑋𝑛−1 ∪

⋃
𝛼

𝐷𝑛
)
⧸∼.

3. Either 𝑋 = 𝑋𝑛 for some 𝑛, or 𝑋 = ∪∞
𝑛=0𝑋

𝑛. In the latter case, we equip 𝑋 with a weak topology: a set 𝐴 ⊂ 𝑋 is closed
if and only if 𝐴 ∩ 𝑋𝑛 is closed for every 𝑛 ∈ N.

In step 2, the injectivity of the embedding on the interior of Δ𝑛 is exactly the same as only gluing the boundary of Δ𝑛 to
𝑋𝑛−1, so the interior is preserved.

4Remember, we identify 𝐷𝑛 with Δ𝑛!
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3.1.2 Δ-complexes

The construction of 𝑆𝑛 with one 0-cell and one 𝑛-cell is not very natural for 𝑛 ≥ 2. We would like to glue the boundary
of an 𝑛-simplex to (𝑛 − 1)-simplices. A Δ-complex is a CW complex where the restriction of the gluing maps 𝜎𝛼 : Δ𝑛 → 𝑋

to each (𝑛 − 1)-face of Δ𝑛 is an inclusion map.

Definition 3.6. A Δ-complex structure on a space 𝑋 is a collection of maps 𝜎𝛼 : Δ𝑛 → 𝑋 (where 𝛼 depends on 𝑛) such that

(i) Each 𝜎𝛼 : Δ𝑛 → 𝑋 is injective on the interior of Δ𝑛, and each 𝑥 ∈ 𝑋 is in the image of exactly one such interior.

(ii) The restriction of 𝜎𝛼 : Δ𝑛 → 𝑋 to every (𝑛 − 1)-face of Δ𝑛 is another map 𝜎𝛽 : Δ𝑛−1 → 𝑋 . We identify the face with
Δ𝑛−1 with using the linear homemorphism that preserves the order of the vertices.

(iii) A set 𝐴 ⊂ 𝑋 is open if and only if 𝜎−1
𝛼 (𝐴) is open in Δ𝑛 for every map.

Again, the last condition is to prevent silly structures like considering 𝑋 as a collection of 0-cells. An important
consequence of the Δ-complex structure is that if we have a map 𝜎𝛼 : Δ𝑛 → 𝑋 for some 𝑛, then the Δ-complex must contain
maps 𝜎𝛽 : Δ𝑘 → 𝑋 for every 𝑘 < 𝑛 (by restricting 𝜎𝛼 to the faces of Δ𝑛). The CW-complex structure of 𝑆𝑛 as an 𝑛-cell and
a 0-cell is not a Δ-complex for 𝑛 ≥ 2.

Example 3.7.

1. The homeomorphism from 𝜕 (Δ𝑛) → 𝑆𝑛−1 is a Δ-complex structure.

2. Here is a Δ-complex structure on the torus.

Figure 12: A Δ-complex structure on the torus

3. Here is a structure that is not a Δ-complex structure on the torus

Figure 13: Not a Δ-complex structure on the torus
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3.1.3 Simplicial complexes

Simplicial complexes have even more structure than Δ-complexes.

Definition 3.8. A simplicial complex structure on a space 𝑋 is a Δ-complex structure such that

(i) Each 𝜎𝛼 : Δ𝑛 → 𝑋 maps different faces of Δ𝑛 to different (𝑛 − 1)-simplices in 𝑋𝑛−1.

(ii) The image of each simplex in 𝑋 is uniquely determined by its vertices.

For the combinatorialists, here is another definition.

Definition 3.9. A simplicial complex K is a collection of simplices such that

(i) Every face of a simplex in K is also in K, and

(ii) the nonempty intersection of any two simplices 𝜎1, 𝜎2 ∈ K is a face of both 𝜎1 and 𝜎2.

A simplicial complex structure on a space 𝑋 is a homeomorphism from a simplicial complex to 𝑋 .

Example 3.10.

1. The Δ-complex structure on 𝑆1 formed by attaching a 1-cell to a 0-cell is not a simplicial complex. Let 𝜎0 : Δ0 → 𝑋

and 𝜎1 : Δ1 → 𝑋 be the attaching maps. The map 𝜎1 : Δ1 → 𝑆1 maps both vertices of Δ1 to the same point in 𝑋 ,
violating (i). The structure also violates (ii): the vertex Δ0 determines both maps 𝜎0 and 𝜎1.

2. The homeomorphism 𝜕 (Δ𝑛) → 𝑆𝑛−1 is a simplicial complex structure.

Any Δ-complex structure can be subdivided to create a simplicial complex structure. Here is an example for the sphere
𝑆1 with the Δ-complex structure of a 1-cell and a 0-cell.

Figure 14: By subdiving 𝑆1 enough times, we create a simplicial complex structure.

Of course, the structure we have created is just the homeomorphism 𝜕 (Δ2) → 𝑆1, but the method is instructive.

3.2 The singular homology groups

Now we will forget all about our complexes and construct the most general homology groups: the singular ones. Instead
of considering maps 𝜎 : Δ𝑛 → 𝑋 that have a nice structure, we will consider all possible continuous maps 𝜎 : Δ𝑛 → 𝑋 . This
has the advantage of being general, but the disadvantage of being computationally unwieldy. We will later see that we can
define homology groups using the nicer structures from the previous subsection, and that these homology groups are exactly
the same.

Definition 3.11. For every 𝑛 ∈ N, define the chain group 𝐶𝑛 (𝑋) as the free abelian group generated by all possible maps
𝜎 : Δ𝑛 → 𝑋 . That is,

𝐶𝑛 (𝑋) = {
∑︁
𝛼

𝑛𝛼𝜎𝛼 : 𝜎𝛼 : Δ𝑛 → 𝑋},

where we only allow finite sums. The elements of 𝐶𝑛 (𝑋) are called 𝑛-chains of 𝑋 .

The formal sums in𝐶𝑛 (𝑋) are similar to the concatenation of loops we saw in the fundamental group. Since the simplices
are oriented, we can think of its image under a map 𝜎 as oriented in 𝑋 . The element 𝑛 · 𝜎 involves walking along the image
of 𝜎 𝑛 times, where the direction of the walk depends on whether 𝑛 is positive. This analogy does not extend well to formal
sums

∑
𝑛𝛼𝜎𝛼 where the images of each 𝜎𝛼 might be disjoint. To force an extension, we can imagine a person walking along

𝜎𝛼 𝑛𝛼 times, and then jumping to the next map.
Remember, the intuition for homology is to measure the holes in the space. So, we need to look at the boundaries of the

maps 𝜎𝛼.
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Figure 15: The orientation-preserving walk along the boundary of Δ2 uses the edges [𝑣0𝑣1], [𝑣1𝑣2],−[𝑣0𝑣2].

Definition 3.12. Define the boundary map 𝜕𝑛 : 𝐶𝑛 (𝑋) → 𝐶𝑛−1(𝑋) as follows. Write the 𝑛-simplex Δ𝑛 as [𝑣0, · · · , 𝑣𝑛],
where the vertices are ordered. Let [𝑣0, · · · , 𝑣𝑖 , · · · , 𝑣𝑛] be the (𝑛 − 1)-simplex with vertices {𝑣 𝑗 : 𝑗 ≠ 𝑖}. This is the unique
(𝑛 − 1)-face of Δ𝑛 that does not contain the vertex 𝑣𝑖 . Given a map 𝜎 : Δ𝑛 → 𝑋 , let 𝜎 | [𝑣0, · · · , 𝑣𝑖 , · · · , 𝑣𝑛] denote the
restriction of 𝜎 to the (𝑛 − 1)-face. Define

𝜕𝑛 (𝜎) =
𝑛∑︁
𝑖=0

(−1)𝑖𝜎 | [𝑣0, · · · , 𝑣𝑖 , · · · , 𝑣𝑛] ∈ 𝐶𝑛−1(𝑋)

and extend it linearly to the free abelian group 𝐶𝑛 (𝑋). When 𝑛 = 0, 𝛿0 : 𝐶0(𝑋) → 0 is the zero map.

The reason for the factor of (−1)𝑖 is to make sure that our imaginary walk along Δ𝑛 is orientation-preserving. Consider
the following example with the triangle Δ2:

Lemma 3.13. The boundary maps satisfy 𝛿𝑛 ◦ 𝛿𝑛+1 = 0.

Proof. Given 𝜎 : Δ𝑛+1 → 𝑋 ,

𝛿𝑛𝛿𝑛+1(𝜎) = 𝛿𝑛
𝑛+1∑︁
𝑖=0

(−1)𝑖𝜎 | [𝑣0, · · · , 𝑣𝑖 , · · · , 𝑣𝑛+1]

=

𝑛+1∑︁
𝑖=0

∑︁
𝑗<𝑖

(−1) 𝑗+𝑖𝜎 | [𝑣0, · · · , 𝑣𝑖 , 𝑣 𝑗 , · · · , 𝑣𝑛+1] +
𝑛+1∑︁
𝑖=0

∑︁
𝑗>𝑖

(−1) 𝑗+1+𝑖𝜎 | [𝑣0, · · · , 𝑣𝑖 , 𝑣 𝑗 , · · · , 𝑣𝑛+1]

= 0.

Each term [𝑣0, · · · , 𝑣𝑖 , · · · , 𝑣𝑛+1] is an (𝑛 − 1)-simplex in its own right. When we remove vertex 𝑗 from the order, the parity
of its appearance depends on whether 𝑗 < 𝑖 or 𝑗 > 𝑖. This is why the second boundary map splits into two sums that cancel
each other.

Extending this linearly yields the result that 𝛿𝑛 ◦ 𝛿𝑛+1 = 0 on the entire chain group.5

Now we are ready to define the homology groups. The previous lemma tells us that the sequence
(
𝐶𝑛 (𝑋)

)
𝑛∈N forms what

is called a chain complex with the boundary maps.

Definition 3.14. A chain complex is a sequence of groups (𝐶𝑛)𝑛∈Z with connecting homomorphisms 𝛿𝑛 : 𝐶𝑛 → 𝐶𝑛−1 such
that 𝛿𝑛 ◦ 𝛿𝑛+1 = 0.

Homology groups can be defined for any chain complex, but for now we will focus on our topological motivations. For
our homology groups, we only consider chain complexes where 𝐶𝑛 = 0 for 𝑛 < 0.

Definition 3.15. The 𝑛th singular homology group of 𝑋 is defined as

𝐻𝑛 (𝑋) = ker 𝛿𝑛⧸im𝛿𝑛+1
.

The elements of im𝛿𝑛+1 are called boundaries because they arise as the boundaries of (𝑛 + 1)-chains. The elements of
ker 𝛿𝑛 are called cycles because their boundaries “cycle around” to cancel out.

For an arbitrary space 𝑋 , the simplest singular chain group we can consider is𝐶0(𝑋). A continuous map from a 0-simplex
to 𝑋 is just a map from a 0-simplex to a point of 𝑋 . So, the chain group𝐶0(𝑋) is the free abelian group generated by the points
of 𝑋 . Since 𝛿0 is the zero map, ker 𝛿0 = 𝐶0(𝑋). The image of a 1-chain under the boundary map 𝛿1 is of the form 𝑥 − 𝑦, where
𝑥, 𝑦 ∈ 𝑋 . A 1-chain is just a path in 𝑋 , so 𝑥 − 𝑦 is the image of a 1-chain if and only if 𝑥 and 𝑦 are in the same path-connected
component of 𝑋 . So, im𝛿1 is the free abelian group generated by {𝑥 − 𝑦 : 𝑥 and 𝑦 are in the same path component}. This
proves the following proposition:

5Don’t forget to extend to the chain group!
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Proposition 3.16. 𝐻0(𝑋) �
⊕

𝑖∈𝐼 Z, where 𝐼 indexes the path components of 𝑋 . In particular, 𝐻0(𝑋) � Z if and only if 𝑋
is path-connected.

We already have a topological characterization of 𝑋 using a homology group!
Next, the group 𝐻1(𝑋) bears a striking resemblance to 𝜋1(𝑋). A map 𝜎 : Δ1 → 𝑋 is in the kernel of 𝛿1 exactly when its

endpoints are the same: it is a loop. As we know, a loop is just a continuous map 𝑆1 → 𝑋 . However, the chain group 𝐶1(𝑋)
and its homology group 𝐻1(𝑋) are always abelian, while 𝜋1(𝑋) need not be. This is because 𝐻1(𝑋) is the abelianization of
𝜋1(𝑋): 𝐻1(𝑋) � 𝜋1(𝑋)⧸𝜋′1(𝑋)

, where 𝜋′1(𝑋) is the commutator subgroup. It is not too difficult to show that there is a natural
quotient map 𝜋1(𝑋) → 𝐻1(𝑋). The trick is to show that the kernel of this map is exactly the commutator subgroup, so we
will postpone this proof for later.

Example 3.17 (The singular homologies of a point.). If 𝑋 is a point, then

𝐻𝑛 (𝑋) =
{
Z, 𝑛 = 0;
0, 𝑛 > 0.

The only continuous map from an 𝑛-simplex to 𝑋 is the constant map 𝜎𝑛. So, the chain group 𝐶𝑛 (𝑋) is the infinite cyclic
group generated by 𝜎𝑛. The boundary map sends 𝜎𝑛 to

∑𝑛
𝑖=0(−1)𝑖𝜎𝑛−1. This image is equal to 0 when 𝑛 is odd and to 𝜎𝑛−1

when 𝑛 is even. So, the boundary maps 𝛿𝑛 are alternatingly zero and isomorphisms, except at 𝐶0(𝑋).

· · · 0−−−→
𝛿𝑛+1

Z
�−−→
𝛿𝑛
Z

0−−−→
𝛿𝑛−1

· · · 0−−→
𝛿1
Z

0−−→
𝛿0

0.

The only nonzero homology group of this complex is 𝐻0(𝑋) = Z.

Exercise 5. Prove Proposition 3.16. 6

3.3 Other homology groups

The higher singular homology groups of arbitrary are not so easy to compute. There are far too many continuous maps
from Δ𝑛 → 𝑋 for us to realistically work with. This is why we return to the various complex structures from the previous
subsection to make our chain groups smaller.

Suppose 𝑋 is a CW-complex. From Definition 3.5, we have a collection of maps 𝜎𝛼 : Δ𝑛 → 𝑋 for every 𝑛 ≥ 0. Each
𝜎𝛼 is injective on the interior of Δ𝑛, so we denote the image of 𝜎𝛼 |

∫
(Δ𝑛) as an 𝑛-cell 𝑒𝛼𝑛 . The 𝑛th cellular chain group is

𝐶𝐶𝑊
𝑛 (𝑋), the free abelian group generated by the 𝑛-cells 𝑒𝛼𝑛 . The boundary maps 𝛿𝑛 have a much more complicated definition

that requires some machinery. We will work through it in ??. Assuming, for now, that the boundary maps can be defined to
give 𝐶𝐶𝑊

𝑛 (𝑋) a chain complex structure, we can define the cellular homology groups 𝐻𝐶𝑊
𝑛 (𝑋).

Example 3.18 (The cellular homology of the spheres.). The sphere 𝑆𝑛 has the CW-complex structure of an 𝑛-cell 𝑒𝑛
attached to a 0-cell 𝑒0. The only nonzero chain groups are 𝐶𝐶𝑊

𝑛 (𝑆𝑛) = Z[𝑒𝑛] and 𝐶𝐶𝑊
0 (𝑆𝑛) = Z[𝑒0].

· · · 𝛿𝑛+1−−−→ Z 𝛿𝑛−−→ · · · 𝛿1−−→ Z 𝛿0−−→ 0

For 𝑛 ≥ 2, this immediately tells us that the only nonzero cellular homology groups are𝐻𝐶𝑊
𝑛 (𝑆𝑛) = Z and𝐻𝐶𝑊

0 (𝑆𝑛) = Z. For
𝑛 = 1, we have to pay closer attention to the map 𝛿1 : 𝐶𝐶𝑊

1 (𝑆1) → 𝐶𝐶𝑊
0 (𝑆1). Waving my hands, the boundary of the 1-cell 𝑒1

is just the vertex 𝑒0, so 𝛿1(𝑒1) = 𝑒0−𝑒0 = 0. This shows that 𝛿1 is the identically zero map and 𝐻𝐶𝑊
1 (𝑆1) = 𝐻𝐶𝑊

0 (𝑆1) = Z. Of
course, I have not told you what 𝛿1 is for the cellular chain complex, so this is not a very satisfying (or even good) argument.

6Hint: what is ker 𝛿0⧸im𝛿1 when 𝑋 is path-connected?
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The trouble with defining the cellular boundary map is that, as in the case of the spheres, there may be 𝑛-cells but
no (𝑛 − 1)-cells. This problem is easily resolved by looking at Δ-complexes, which require that the restriction of any map
𝜎 : Δ𝑛 → 𝑋 to an (𝑛 − 1)-face must be another map.

Suppose 𝑋 is a Δ-complex. For each 𝑛 ∈ N, we have a collection of maps {𝜎𝛼 : Δ𝑛 → 𝑋 : 𝛼 ∈ 𝐽𝑛}. Let 𝐶Δ
𝑛 (𝑋) be the

free abelian group generated by the maps 𝜎𝛼. Define the boundary map 𝛿𝑛 : 𝐶Δ
𝑛 (𝑋) → 𝐶Δ

𝑛−1(𝑋) by

𝛿𝑛 (𝜎) =
𝑛∑︁
𝑖=0

(−1)𝑖𝜎 | [𝑣0, · · · , 𝑣𝑖 , · · · , 𝑣𝑛] .

This is well-defined because 𝑋 is aΔ-complex, and the same proof of Lemma 3.13 shows that the groups
(
𝐶Δ
𝑛 (𝑋)

)
form a chain

complex. We call these the semi-simplicial chain groups, and the corresponding homology groups 𝐻Δ
𝑛 (𝑋) the semi-simplicial

homology groups.

Example 3.19 (The semi-simplicial homology of the torus.).

Finally, the simplicial homology groups are defined in exactly the same way. Given a simplicial complex structure on 𝑋 ,
𝐶𝑆
𝑛 (𝑋) is the free abelian group generated by the 𝑛-simplices. The boundary maps are defined in exactly the same way, as are

the homology groups. Since every simplicial complex is also a Δ-complex, the simplicial homology groups are the same as
the semi-simplicial homology groups when we consider the structure as a Δ-complex instead.

Remark 3.20 (A very important remark about notation.). Several authors prefer to denote 𝐶Δ
𝑛 and 𝐶𝑆

𝑛 by Δ𝑛 and 𝑆𝑛

respectively. I am of the opinion that this makes it easy to forget that they are chain groups, so I will use the more cumbersome
superscript notation.

Another reason for preferring this notation is that regardless of which chain groups you start out with, the resulting
homology groups are all the same. There are two nontrivial results hiding in that statement. The first is that, for example, the
cellular homology groups are well-defined. Given any two CW-complex structures on 𝑋 , even if the chain groups differ, the
homology groups are isomorphic. This is true for semi-simplicial and simplicial homologies as well. The second statement is
that the singular, cellular, semi-simplicial, and simplicial homology groups are all the same. We will see a proof of this later.

Exercise 6. Let 𝑋 and 𝑌 be topological spaces. Show that the singular homology groups are 𝐻𝑛 (𝑋 ⊔ 𝑌 ) = 𝐻𝑛 (𝑋) ⊕ 𝐻𝑛 (𝑌 )
for all 𝑛 ∈ N. Generalize this to arbitrary disjoint unions ⊔𝛼𝑋𝛼.

4 Computing homology groups

There are two ways to compute the homology groups of a space 𝑋 . The first is to directly use a complex structure (like a
Δ-complex) to derive explicit expressions for the chain groups and boundary maps. This has the advantage of being a direct
and elementary method but, as we saw with Example 3.19, can quickly become an involved process. With this approach, we
are also freely using the fact that all types of homology groups are isomorphic.

The second approach to computation is what I will call the long exact sequence approach. First, we decompose your
space 𝑋 into spaces whose homology groups we know. We then use a long exact sequence of homology groups where the
only unknown groups are the homology groups of 𝑋 , and use exactness to recover all the groups.

There are two important long exact sequences for this purpose. The first is the long exact sequence of relative homologies.
Using the Excision theorem (subsection 4.3), this tells us the homology groups of the quotient spaces 𝑋⧸𝐴 for good pairs
(𝑋, 𝐴). The second is the Mayer-Vietoris sequence, which is the homological analog of Van Kampen’s theorem.

4.1 Maps between chain complexes

Before we get into computations, we need to do some book-keeping. For example, we need to show that homotopy
equivalent spaces have the same homology groups. There are two purely algebraic results that will lay the foundation for the
rest of this section. Recall the definition of an arbitrary chain complex from Definition 3.14.
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Definition 4.1. Let (𝐴𝑛, 𝛼𝑛) and (𝐵𝑛, 𝛽𝑛) be chain complexes. A map between chain complexes is a sequence of homomor-
phisms 𝑓𝑛 : 𝐴𝑛 → 𝐵𝑛 such that the following diagram commutes.

· · · 𝐴𝑛 𝐴𝑛−1 · · ·

· · · 𝐵𝑛 𝐵𝑛−1 · · ·

𝛼𝑛+1 𝛼𝑛

𝑓𝑛

𝛼𝑛−1

𝑓𝑛−1

𝛽𝑛+1 𝛽𝑛 𝛽𝑛−1

In other words, 𝛽𝑛 ◦ 𝑓𝑛 = 𝑓𝑛−1 ◦ 𝛼𝑛.

4.1.1 Induced homomorphisms

Proposition 4.2. A map between chain complexes induces homomorphisms 𝑓∗ : 𝐻𝑛 (𝐴) → 𝐻𝑛 (𝐵) between homology groups.

Remark 4.3 (An apology for notation.). The astute reader will notice some sloppy notation in the previous proposition. The
maps 𝑓∗ should depend on 𝑛. The notation 𝐻𝑛 (𝐴) has not been defined, even if it is clear from context. It is common for
algebraic topologists (and perhaps, algebraists in general) to denote a chain complex by 𝐴•. This means that the 𝑛th chain
group is 𝐴𝑛. Similarly, 𝐻∗(𝐴) denotes the sequence of homology groups of the chain complex 𝐴•, where the 𝑛th homology
group is 𝐻𝑛 (𝐴).

As for the functions 𝑓∗, a double subscript is cumbersome and the index 𝑛 will usually be clear from context. When it
is not clear, I will use a double subscript. We will avoid relegating any indices to the superscript as that is reserved for the
cohomology groups.

Proof of Proposition 4.2. We want to define the induced map 𝑓∗ : 𝐻𝑛 (𝐴) → 𝐻𝑛 (𝐵) by 𝑓∗ [𝑎] = [ 𝑓∗(𝑎)], where the square
brackets denote the homology class of an element. We only need to check that this is well-defined: 𝑓𝑛 sends cycles to cycles
and boundaries to boundaries. If 𝛼𝑛 (𝑎) = 0 for some 𝑎 ∈ 𝐴𝑛, then 𝛽𝑛 𝑓𝑛 (𝑎) = 𝑓𝑛−1𝛼𝑛 (𝑎) = 0. Similarly, if 𝑎 ∈ im𝛼𝑛+1, so
𝑎 = 𝛼𝑛+1(𝑎′) for some 𝑎′ ∈ 𝐴𝑛+1, then 𝑓𝑛 (𝑎) = 𝛽𝑛+1 𝑓𝑛+1(𝑎′) ∈ im𝛽𝑛+1.

From now on, we will simply say 𝑓 : 𝐴• → 𝐵• is a map between chain complexes, where 𝑓 signifies the sequence of
maps ( 𝑓𝑛)𝑛∈N.

Corollary 4.4.

(i) If 𝑓 : 𝐴• → 𝐵• and 𝑔 : 𝐵• → 𝐶• are maps between chain complexes, then (𝑔 𝑓 )∗ = 𝑔∗ 𝑓∗. That is, the induced maps
agree on each homology group 𝐻𝑛 (𝐴).

(ii) If 1 : 𝐴• → 𝐴• is the identity map, then 1∗ is the identity map on the homology groups.

Given a map 𝑓 : 𝑋 → 𝑌 , we can define a map 𝑓 : 𝐶𝑛 (𝑋) → 𝐶𝑛 (𝑌 ) by composition: if 𝜎 : Δ𝑛 → 𝑋 , then 𝑓 ◦𝜎 : Δ𝑛 → 𝑌 .
This induces a map between the chain complexes 𝐶•(𝑋) and 𝐶•(𝑌 ).

Corollary 4.5. If two maps 𝑓 , 𝑔 : 𝑋 → 𝑌 are homotopic, then the induced maps 𝑓∗ and 𝑔∗ on the homologies are the same.
In particular, if 𝑋 and 𝑌 are homotopy equivalent spaces, they have the same homology groups.

Unfortunately, it is not true that if two spaces have the same homology groups, then they are homotopy equivalent.
However, as a very important corollary.

Corollary 4.6. If 𝑋 is contractible, then 𝐻0(𝑋) = Z and 𝐻𝑛 (𝑋) = 0 for 𝑛 > 0. In particular, 𝐻0(Δ𝑘) = Z and 𝐻𝑛 (Δ𝑘) = 0
for 𝑛 > 0.
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4.1.2 Short exact sequences

In order to derive our two long exact sequences for homology, we need to start with short exact sequences of chain
complexes. See ?? for background on exact sequences.

Definition 4.7. We say 0 −→ 𝐴•
𝑖−→ 𝐵•

𝑗
−→ 𝐶• −→ 0 is a short exact sequence of chain complexes if 0 −→ 𝐴𝑛

𝑖𝑛−→ 𝐵𝑛

𝑗𝑛−−→ 𝐶𝑛 −→ 0
is a short exact sequence of chain complexes that commutes with the boundary maps.

0 0 0

· · · 𝐴𝑛+1 𝐴𝑛 𝐴𝑛−1 · · ·

· · · 𝐵𝑛+1 𝐵𝑛 𝐵𝑛−1 · · ·

· · · 𝐶𝑛+1 𝐶𝑛 𝐶𝑛−1 · · ·

0 0 0

𝛼𝑛+1

𝑖𝑛+1

𝛼𝑛

𝑖𝑛 𝑖𝑛−1

𝛽𝑛+1

𝑗𝑛+1

𝛽𝑛

𝑗𝑛 𝑗𝑛−1

𝛾𝑛+1 𝛾𝑛

Figure 16: Each column is a short exact sequence and the diagram commutes.

Theorem 4.8. A short exact sequence of chain complexes 0 −→ 𝐴•
𝑖−→ 𝐵•

𝑗
−→ 𝐶• −→ 0 induces a long exact sequence of

homology groups.

· · · −→ 𝐻𝑛 (𝐴)
𝑖∗−→ 𝐻𝑛 (𝐵)

𝑗∗−→ 𝐻𝑛 (𝐶)
𝛿∗−−→ 𝐻𝑛−1(𝐴) −→ · · ·

Proof. The maps 𝑖∗ and 𝑗∗ are just the maps on homology induced by the maps 𝑖 and 𝑗 on the chain complexes. The most
important thing to understand is the definition of the map 𝛿∗ : 𝐻𝑛 (𝐶) → 𝐻𝑛−1(𝐴). Let 𝑐 ∈ ker 𝛾𝑛. Since 𝑗𝑛 is surjective,
there is some 𝑏 ∈ 𝐵𝑛 such that 𝑗𝑛 (𝑏) = 𝑐. The element 𝛽𝑛 (𝑏) ∈ ker( 𝑗𝑛−1) , since 𝑗𝑛−1𝛽𝑛 (𝑏) = 𝛾𝑛 𝑗𝑛 (𝑏) = 0 by definition.
We know that im𝑖𝑛−1 = ker 𝑗𝑛−1, so there is some 𝑎 ∈ 𝐴𝑛−1 such that 𝑖𝑛−1(𝑎) = 𝛽𝑛 (𝑏). Define 𝛿∗( [𝑐]) = [𝑎].

𝐴𝑛−1

𝐵𝑛 𝐵𝑛−1

𝐶𝑛

𝑖𝑛−1

𝛽𝑛

𝑗𝑛

I refer the reader to Hatcher, p. 116–117 to verify that this map is well-defined, and to check that the sequence is long
exact.

4.1.3 Naturality

There is some categorical definition for naturality here that involves natural transformations between functors. Maybe I
will formalize it someday. Here is all you need to know:

Theorem 4.9. Let 0 −→ 𝐴•
𝑖−→ 𝐵•

𝑗
−→ 𝐶• −→ 0 and 0 −→ 𝑋•

𝑘−→ 𝑌•
𝑙−→ 𝑍• −→ 0 be a short exact sequence of chain complexes.

Suppose there are chain maps 𝑓 : 𝐴• → 𝑋•, 𝑔 : 𝐵• → 𝑌•, and ℎ : 𝐶• → 𝑍• such that the following diagram commutes.
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0 𝐴𝑛 𝐵𝑛 𝐶𝑛 0

0 𝑋𝑛 𝑌𝑛 𝑍𝑛 0

𝑖𝑛

𝑓𝑛 𝑔𝑛

𝑗𝑛

ℎ𝑛

𝑘𝑛 𝑙𝑛

Then the induced maps on the long exact sequence of homologies form a commutative diagram.

· · · 𝐻𝑛 (𝐴) 𝐻𝑛 (𝐵) 𝐻𝑛 (𝐶) 𝐻𝑛−1(𝐴) · · ·

· · · 𝐻𝑛 (𝑋) 𝐻𝑛 (𝑌 ) 𝐻𝑛 (𝑍) 𝐻𝑛−1(𝑋) · · ·

𝑖∗

𝑓∗ 𝑔∗

𝑗∗ 𝛿∗

ℎ∗ 𝑓∗

𝑘∗ 𝑙∗ 𝛿∗

This is a very wordy result with a lot of moving parts. We will see how this comes in handy once we have set up our long
exact sequences in the rest of this section.

Exercise 7. Prove Corollary 4.4.

4.2 Reduced and relative homologies

4.2.1 Reduced homologies

Sometimes, it is more convenient to consider a homology theory where all the homologies of a point are zero, Once we
see an axiomatic approach to homology, the reason for preferring reduced homology will be clear: the suspension axiom
holds in all degrees. For now, the reduced homology groups will give us nicer expressions for the homology groups of product
spaces and wedge sums.

Definition 4.10. Define the augmented (singular) chain complex as

· · · −→ 𝐶1(𝑋)
𝛿1−−→ 𝐶0(𝑋)

𝜖−→ Z→ 0,

where 𝜖
( ∑

𝑖 𝑛𝑖𝜎𝑖

)
=
∑

𝑖 𝑛𝑖 . The reduced homology groups 𝐻̃𝑛 (𝑋) are the homology groups of this chain complex.

For 𝑛 > 0, the reduced homology groups are the same as the homology groups. For 𝑛 = 0, 𝐻̃0(𝑋) = ker 𝜖 and
𝐻0(𝑋) � 𝐻̃0(𝑋) ⊕ Z. As a result, whenever 𝑋 is path-connected, 𝐻̃0(𝑋) = 0. This is also more in line with our intuition that
a path-connected space should have no 0-dimensional holes.

We will use reduced homologies in long exact sequences of homologies. A short exact sequence of chain complexes
induces a short exact sequence of augmented chain complexes.

4.2.2 Relative homologies

The motivation for relative homology is to understand the homology groups of the quotient space 𝑋⧸𝐴, where 𝐴 is a
subspace of 𝑋 . It is not always true that 𝐻𝑛

(
𝑋⧸𝐴

)
= 𝐻𝑛 (𝑋)⧸𝐻𝑛 (𝐴). In fact, it does not always make sense to describe 𝐻𝑛 (𝐴)

as a subgroup of 𝐻𝑛 (𝑋). Instead, the relative homology groups 𝐻𝑛 (𝑋, 𝐴) measure the difference between 𝐻𝑛 (𝑋) and 𝐻𝑛 (𝐴).
For what Hatcher calls good pairs (𝑋, 𝐴), these end up being the homology groups of the quotient space.

Any 𝑛-chain 𝜎 : Δ𝑛 → 𝐴 extends to an 𝑛-chain 𝑖 ◦ 𝜎 : Δ𝑛 → 𝑋 via the inclusion map. This embeds the group 𝐶𝑛 (𝐴) as
a subgroup of 𝐶𝑛 (𝑋). The restriction of the boundary map 𝛿𝑋𝑛 : 𝐶𝑛 (𝑋) → 𝐶𝑛−1(𝑋) to the subgroup 𝐶𝑛 (𝐴) restricts to a map
𝐶𝑛 (𝐴) → 𝐶𝑛−1(𝐴). This tells us that the groups

(
𝐶𝑛 (𝑋)⧸𝐶𝑛 (𝐴), 𝛿𝑛

)
form a chain complex.

Definition 4.11. The relative homology groups of the pair (𝑋, 𝐴) are the homology groups 𝐻𝑛 (𝑋, 𝐴) of the chain complex(
𝐶𝑛 (𝑋)⧸𝐶𝑛 (𝐴), 𝛿𝑛

)
.
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Proposition 4.12. When 𝐴 = {𝑥0} is a point, the relative homology groups 𝐻𝑛 (𝑋, 𝐴) are the same as the reduced homology
groups 𝐻̃𝑛 (𝑋).

Proof. Let 𝛿𝑟𝑒𝑙𝑛 be the boundary maps of the relative chain complex, and let 𝛿𝑛 be the usual boundary map for 𝐶𝑛 (𝑋) and
𝐶𝑛 (𝐴).

When 𝑛 is odd, 𝛿𝑛 is identically zero on 𝐶𝑛 (𝐴), and when 𝑛 is even it is an isomorphism. So, when 𝑛 is odd,

ker 𝛿𝑟𝑒𝑙𝑛 = ker 𝛿𝑛⧸𝐶𝑛 (𝐴), since 𝐶𝑛 (𝐴) ⊂ ker(𝛿𝑛)

im𝛿𝑟𝑒𝑙𝑛 = im𝛿𝑛 + 𝐶𝑛−1(𝐴)⧸𝐶𝑛−1(𝐴), and im𝛿𝑛 ∩ 𝐶𝑛−1(𝐴) = {0}.

Similarly, when 𝑛 is even and 𝑛 > 0,

ker 𝛿𝑟𝑒𝑙𝑛 = ker 𝛿𝑛 + 𝐶𝑛 (𝐴)⧸𝐶𝑛 (𝐴), and ker 𝛿𝑛 ∩ 𝐶𝑛 (𝐴) = {0}

im𝛿𝑟𝑒𝑙𝑛 = im𝛿𝑛⧸𝐶𝑛−1(𝐴), since 𝐶𝑛−1(𝐴) ⊂ im𝛿𝑛.

The rest of the proof is just using basic isomorphism theorems from group theory to show that 𝐻𝑛 (𝑋, 𝐴) � 𝐻̃𝑛 (𝑋), for 𝑛 > 0.
When 𝑛 = 0, im𝛿𝑟𝑒𝑙1 = im𝛿1 + 𝐶0(𝐴)⧸𝐶0(𝐴), and ker 𝛿𝑟𝑒𝑙0 = 𝐶0(𝑋)⧸𝐶0(𝐴). So,

𝐻0(𝑋, 𝐴) � 𝐶0(𝑋)⧸im𝛿1 + 𝐶0(𝐴) �
𝐶0(𝑋)⧸im𝛿1 ⊕ Z = 𝐻̃0(𝑋).

In general, we have a short exact sequence of chain complexes

0 −→ 𝐶•(𝐴)
𝑖−→ 𝐶•(𝑋)

𝑗
−→ 𝐶•(𝑋, 𝐴) −→ 0,

which, as we know, gives us a long exact sequence of homology groups.

Theorem 4.13. There is a long exact sequence of homology groups

· · · −→ 𝐻𝑛 (𝐴)
𝑖∗−→ 𝐻𝑛 (𝑋)

𝑗∗−→ 𝐻𝑛 (𝑋, 𝐴)
𝛿∗−−→ 𝐻𝑛−1(𝐴) −→ · · ·

The map 𝛿∗ : 𝐻𝑛 (𝑋, 𝐴) → 𝐻𝑛−1(𝐴) has a much nicer explanation. Elements of ker 𝛿𝑟𝑒𝑙𝑛 are mapped to 0 mod 𝐶𝑛−1(𝐴)
by the boundary map. These are cycles in 𝑋 whose boundaries lie in 𝐴. The map 𝛿∗ sends each cycle to its boundary.

Example 4.14. When 𝐴 is a point, for all 𝑛 > 0, 𝐻𝑛 (𝐴) = 0. This induces an isomorphism 𝐻𝑛 (𝑋) � 𝐻𝑛 (𝑋, 𝐴) for all 𝑛 > 1.
When 𝑛 = 1, we have

0
𝑖∗−→ 𝐻1(𝑋)

𝑗∗−→ 𝐻1(𝑋, 𝐴)
𝛿∗−−→ 𝐻0(𝐴)

This is why it is often helpful to consider reduced homologies. The corresponding short exact sequence of augmented chain
complexes gives us a long exact sequence of the reduced relative homologies. This gives us the isomorphism 𝐻̃1(𝑋) �
𝐻̃1(𝑋, 𝐴).

Remark 4.15 (Defining the reduced relative homology.). The reduced relative homology 𝐻̃𝑛 (𝑋, 𝐴) has two possible defini-
tions. The standard definition (and the one used in these notes) is as the relative homology of the augmented chain complexes.
Augment the chain complexes 𝐶•(𝐴) and 𝐶•(𝑋) as usual with the maps 𝐶0(𝐴)

𝜖−→ Z → 0 and 𝐶0(𝑋)
𝜖−→ Z → 0. It is now

clear that when we take the quotients of the chain groups, the resulting chain complex is exactly the same as 𝐶•(𝑋, 𝐴). The
only difference is that the homology groups that appear in the long exact sequence are the reduced homology groups of 𝑋
and 𝐴.

The groups 𝐻̃𝑛 (𝑋, 𝐴) are not formed by augmenting the chain complex
(
𝐶𝑛 (𝑋)⧸𝐶𝑛 (𝐴)

)
! Make sure you understand this

difference.
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Example 4.16 (The homologies of (𝐷𝑛, 𝑆𝑛−1).). The long exact sequence for the reduced homologies yields isomorphisms
𝐻𝑖 (𝐷𝑛, 𝑆𝑛−1) → 𝐻̃𝑖−1(𝑆𝑛−1), since the reduced and non-reduced relative homology groups are the same. This tells us that
𝐻𝑖 (𝐷𝑛, 𝑆𝑛−1) = Z if 𝑖 = 𝑛, and 0 otherwise.

To conclude this section, we can also look at induced homomorphisms between relative homology groups. For the rest
of this section, (𝑋, 𝐴) is a pair if 𝐴 ⊂ 𝑋 . A map 𝑓 : (𝑋, 𝐴) → (𝑌, 𝐵) is a map of pairs if 𝑓 : 𝑋 → 𝑌 is a map and
𝑓 (𝐴) ⊂ 𝐵. A map of pairs extends to a well-defined map on the quotient chain complex, so it induces a homomorphism
𝑓∗ : 𝐻∗(𝑋, 𝐴) → 𝐻∗(𝑌, 𝐵). We say two maps of pairs 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵) are homotopic if there is a homotopy𝐻 : 𝑓 → 𝑔

such that 𝐻 (𝐴, 𝑡) ⊂ 𝐵 for all 𝑡 ∈ [0, 1].

Proposition 4.17. If 𝑓 , 𝑔 : (𝑋, 𝐴) → (𝑌, 𝐵) are homotopic as maps of pairs, then they induce the same homomorphisms
𝐻∗(𝑋, 𝐴) → 𝐻∗(𝑌, 𝐵).

Exercise 8. Fill in the group-theoretic details in the proof of Proposition 4.12.

Exercise 9. Following Example 4.14, use the long exact sequence to compute 𝐻0(𝑋, 𝐴) when 𝐴 is a point.

4.3 Excision

The goal of this section is to prove the following result.

Theorem 4.18. Suppose 𝐴 ⊂ 𝑋 is a nonempty closed subspace that is a deformation retract of some neighborhood in 𝑋 .
Then, there is a long exact sequence of reduced homologies7

· · · −→ 𝐻̃𝑛 (𝐴)
𝑖∗−→ 𝐻̃𝑛 (𝑋)

𝑗∗−→ 𝐻̃𝑛 (𝑋/𝐴)
𝛿∗−−→ 𝐻̃𝑛−1(𝐴) −→ · · · −→ 𝐻̃0(𝑋/𝐴) → 0

But first, some applications!

Example 4.19 (The homologies of the spheres, using quotients.). For 𝑛 > 0, let 𝑋 = 𝐷𝑛 and 𝐴 = 𝑆𝑛−1. A neighborhood of
𝑆𝑛−1 in 𝐷𝑛 deformation retracts onto it. The quotient 𝐷

𝑛
⧸𝑆𝑛−1 is homeomorphic to 𝑆𝑛. If we know that the homology groups

of 𝑆1 are 𝐻1(𝑆1) = 𝐻0(𝑆1) = Z, and 𝐻𝑘 (𝑆1) = 0 for 𝑘 > 1, we can use induction and the long exact sequence to compute the
homology groups of 𝑆𝑛.

Example 4.20 (The incorrect homology of 𝑆1.). Let 𝑋 = R and 𝐴 = Z. Since Z has the discrete topology as a subspace of R,
it has the 𝐶𝑊-complex structure of being a disjoint union of countably many points. So, 𝐻0(Z) =

⊕
Z Z, and 𝐻𝑛 (Z) = 0 for

𝑛 > 0. Since R is contractible, 𝐻0(R) = Z and 𝐻𝑛 (R) = 0 for 𝑛 > 0. The quotient space R/Z is homeomorphic to 𝑆1. From
the long exact sequence of reduced homologies, 𝐻̃𝑛 (𝑆1) = 0 for all 𝑛 ≥ 2. The last few terms in the long exact sequence are

0 −→ 𝐻̃1(𝑆1) 𝛿∗−−→ 𝐻̃0(Z)
𝑖∗−→ 𝐻̃0(R)

𝑗∗−→ 𝐻̃0(𝑆1) → 0

Since 𝐻̃0(R) = 0, 𝐻̃0(𝑆1) = 0. Also, this tells us that 𝐻̃1(𝑆1) � 𝐻̃0(Z) �
⊕
Z Z.

The problem with the previous example is that there are two notions of quotients for R/Z. The one that yields the
homeomorphism to 𝑆1 is the quotient as a topological group. The other one, which is what we consider in this theorem, is
the quotient as a topological subspace. We identify all the points of Z as a single point, so the quotient R/Z is an infinite
wedge sum of circles. There is nothing wrong with our computations in the previous example, only with our description of
the quotient space R/Z.

The key to this proof is the Excision theorem, which is interesting in its own right.

Theorem 4.21.

7These are the usual reduced homologies of the quotient space 𝑋/𝐴, not the trickery with reduced relative homologies.
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1. Given subspaces 𝑍 ⊂ 𝑌 ⊂ 𝑋 such that the closure of 𝑍 is contained in the interior of 𝐴, the inclusion map
(𝑋 − 𝑍, 𝐴 − 𝑍) → (𝑋, 𝐴) induces isomorphisms on the relative homologies 𝐻∗(𝑋 − 𝑍, 𝐴 − 𝑍) → 𝐻∗(𝑋, 𝐴).

2. Given subspaces 𝐴, 𝐵 ⊂ 𝑋 whose interiors cover 𝑋 , the inclusion map (𝐵, 𝐴∩ 𝐵) → (𝑋, 𝐴) induces isomorphisms on
the relative homologies 𝐻∗(𝐵, 𝐴 ∩ 𝐵) → 𝐻∗(𝑋, 𝐴).

The two statements are equivalent by setting 𝐵 = 𝑋 − 𝑍 . Then, cl(𝑍) ⊂ int(𝐴) if and only if int(𝐵) and int(𝐴) cover 𝑋 ,
since int(𝐵) = 𝑋 − cl(𝑍).

Example 4.22 (The homologies of the spheres, using excision.). As always, our proof starts by induction, with the base case
being the homologies of 𝑆1. For 𝑛 > 1, consider the pair (𝑆𝑛, 𝐷𝑛), where 𝐷𝑛 is embedded as the closed lower hemisphere.
Let 𝑝 be the south pole. By the Excision theorem, 𝐻∗(𝑆𝑛 − {𝑝}, 𝐷𝑛 − {𝑝}) � 𝐻∗(𝑆𝑛, 𝐷𝑛) � 𝐻̃∗(𝑆𝑛), since 𝐷𝑛 deformation
retracts to a point. However, the pair (𝑆𝑛 − {𝑝}, 𝐷𝑛 − {𝑝}) is homotopy equivalent to the pair (𝐷𝑛, 𝑆𝑛−1). We know that the
homology groups of (𝐷𝑛, 𝑆𝑛−1) are 𝐻𝑖 (𝐷𝑛, 𝑆𝑛−1) = Z if 𝑖 = 𝑛, and 0 otherwise. So, 𝐻𝑖 (𝑆𝑛) = Z if 𝑖 = 0 or 𝑛, and 0 otherwise.

Where did we need induction? We computed the relative homologies of (𝐷𝑛, 𝑆𝑛−1) in Example 4.16 by induction. At the
inductive step, we only needed to know the homologies of 𝑆𝑛−1, so there is no tautological argument here.

The proof of the Excision theorem is monstrous. The key tool is the following proposition.

Proposition 4.23. Let U be an open cover of 𝑋 , and let 𝐶U
𝑛 (𝑋) be the free abelian group generated by maps 𝜎 : Δ𝑛 → 𝑋

whose images are contained in some set of U. The inclusion 𝐶U
𝑛 (𝑋) ↩→ 𝐶𝑛 (𝑋) induces isomorphisms on the homology

groups 𝐻U
∗ (𝑋) � 𝐻∗(𝑋).

Now, to prove Theorem 4.18, we need to pass from the relative homology of (𝑋, 𝐴) to the reduced homology of 𝑋/𝐴.
The quotient map 𝑋 → 𝑋/𝐴 induces a map of pairs (𝑋, 𝐴) → (𝑋/𝐴, ∗), since 𝐴 is collapsed to a single point.

Corollary 4.24. Suppose there is a subspace 𝐵 ⊂ 𝑋 such that cl(𝐴) ⊂ int(𝐵) and the inclusion 𝐴 ↩→ 𝐵 is a deformation
retract. Then, the map (𝑋, 𝐴) → (𝑋/𝐴, ∗) induces an isomorphism 𝐻∗(𝑋, 𝐴) → 𝐻̃∗(𝑋/𝐴).

Proof. See this link.

Corollary 4.25. Let 𝑋 be the wedge sum of the spaces (𝑋𝛼)𝛼 at the basepoints 𝑥𝛼 ∈ 𝑋𝛼. If the pairs (𝑋𝛼, 𝑥𝛼) are good, then
the inclusion

∨
𝛼 𝑋𝛼 ↩→

⊔
𝛼 𝑋𝛼 s isomorphisms 𝐻∗(

∨
𝛼 𝑋𝛼) �

⊕
𝛼 𝐻̃∗(𝑋𝛼). (Using the expression for 𝐻∗(

⊔
𝛼 𝑋𝛼) from

Exercise 6.)

Exercise 10. Write out the details of Example 4.19 to compute the homology groups of the spheres.

4.4 Mayer-Vietoris

The other long exact sequence is the Mayer-Vietoris sequence, the homological Van Kampen’s theorem. Given a pair of
subspaces 𝐴, 𝐵 ⊂ 𝑋 , let 𝐶𝑛 (𝐴 + 𝐵) be the chains in 𝐶𝑛 (𝑋) that are sums of chains in 𝐶𝑛 (𝐴) and 𝐶𝑛 (𝐵). The boundary maps
turn 𝐶•(𝐴 + 𝐵) into a chain complex, and we get a short exact sequence of chain complexes

0 −→ 𝐶•(𝐴 ∩ 𝐵) 𝑖−→ 𝐶•(𝐴) ⊕ 𝐶•(𝐵)
𝑗
−→ 𝐶•(𝐴 + 𝐵) → 0.

The map 𝑖 sends 𝜎 ∈ 𝐶𝑛 (𝐴∩ 𝐵) to the ordered pair (𝜎,−𝜎) ∈ 𝐶𝑛 (𝐴) ⊕𝐶𝑛 (𝐵). The map 𝑗 sends (𝜎𝑎, 𝜎𝑏) ∈ 𝐶𝑛 (𝐴) ⊕𝐶𝑛 (𝐵)
to the sum 𝜎𝑎 + 𝜎𝑏. As we now know, this induces a long exact sequence of homologies.

Theorem 4.26. If 𝐴, 𝐵 ⊂ 𝑋 such that int(𝐴) and int(𝐵) cover 𝑋 , then there is a long exact sequence

· · · −→ 𝐻𝑛 (𝐴 ∩ 𝐵) 𝑖∗−→ 𝐻𝑛 (𝐴) ⊕ 𝐻𝑛 (𝐵)
𝑗∗−→ 𝐻𝑛 (𝑋)

𝛿∗−−→ 𝐻𝑛−1(𝐴 ∩ 𝐵) −→ · · ·

The trick here is to use Proposition 4.23 so that the inclusion 𝐶𝑛 (𝐴 + 𝐵) ↩→ 𝐶𝑛 (𝑋) induces isomorphisms 𝐻𝑛 (𝐴 + 𝐵) �
𝐻𝑛 (𝑋).

Example 4.27 (The homologies of the spheres, by Mayer-Vietoris). Once again, let 𝑋 = 𝑆𝑛, and let 𝐴 and 𝐵 be slightly
enlarged northern and southern hemispheres respectively. The spaces 𝐴 and 𝐵 are contractible, and 𝐴 ∩ 𝐵 is homotopic to
𝑆𝑛−1. In the Mayer-Vietoris sequence for reduced homologies, this yields isomorphisms 𝐻̃𝑖 (𝑆𝑛) � 𝐻̃𝑖 (𝑆𝑛−1).
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