
Algebraic number theory
Narmada Varadarajan

The broad theme of algebraic number theory is, well, to study the theory of algebraic numbers. There are many
problems of elementary number theory that turn out to have deeper meaning when studied from an algebraic point of
view. Fermat’s last theorem is a classical example of this, but well beyond the scope of this note. Gauss’s quadratic
reciprocity law is another that turns out to follow from properties of field extensions of Q, or number fields. In fact, the
fact that the primes ? ≡ 1 (mod 4) can be written as a sum of two squares follows very quickly from factorising them
in the ring Z[8].

In general, algebraic number theory studies extensions of the integers to understand the structure of prime numbers.
Unique prime factorisation of integers, however, fails in general extensions, which is why Minkowski theory considers
ideals instead of elements. Of course, here we run into another problem. Rings of integers of number fields need not
be principal ideal domains, so there will be “more” ideals than just the principal ones. This is where the ideal class
group and Dirichlet’s unit theorem come in: the first tells us how far the ring of integers is from being a UFD, and the
second classifies the units upto which unique factorisation can hold.
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1 Preliminaries

A comprehensive and better introduction to commutative algebra and Galois theory can be found in other books.
This is only intended to be a brief review of some fundamental concepts.

1.1 Commutative algebra
Unless stated otherwise, the rings we deal with will be commutative integral domains. If ' is a ring, we say � ⊂ '

is an ideal of ' if � is an additive subgroup of ', and for all A ∈ ', A � ⊂ �. We denote this by � C '. We say a proper
ideal � C ' is prime if whenever a product 01 ∈ �, then either 0 ∈ � or 1 ∈ �. We say a proper ideal � C ' is maximal
if it is not contained in any other proper ideal of '.
Exercise 1. Show that a prime ideal is maximal.

Ideals are the analogues of normal subgroups: they are exactly the kernels of ring homomorphisms. Given an ideal
� C ', we can define a quotient ring '/� in the natural way.
Exercise 2. % C ' is a prime ideal if and only if '/% is an integral domain. % C ' is a maximal ideal if and only if
'/% is a field.

We say two ideals �, � C ' are coprime if � + � = '.

Theorem 1.1 (Chinese Remainder Theorem). If p1, . . . ,pA are pairwise coprime ideals in ', then

'�∩A8=1p8
� '�p1 × · · · ×

'�pA .

Each element A ∈ ' generates an ideal 〈A〉. We call such an ideal principal. A principal ideal domain (PID) is a
commutative integral domain in which every ideal is principal.
Exercise 3. Give an example of a commutative integral domain that is not a PID.1

We say A is a unit in ' if it is invertible in '.
Exercise 4. 〈A〉 is a proper ideal if and only if A is not a unit.

We say A is prime if whenever A divides a product 01 (AB = 01 for some B ∈ ') then A divides 0 or A divides 1. We
say A is irreducible if whenever A = 01 then either 0 or 1 is a unit.
Exercise 5. Show that the ideal generated by a prime element is a prime ideal.
Exercise 6. Show that every prime element is irreducible. Give an example of a prime element that is not irreducible.2
Exercise 7. Show that 2 is irreducible in Z[-], but the ideal 〈2〉 is not maximal.

A ring ' is a unique factorisation domain (UFD) if every A ∈ ' can be written as a product of irreducibles
A = ?1 . . . ?=, unique upto multiplication by units. The elements of a UFD mimic many properties of the integers: for
example, we can define a greatest common divisor (gcd) in a UFD. The first fundamental theorem of commutative
algebra is the following. Its proof is a worthwhile exercise in definition-chasing.

Theorem 1.2. Every principal ideal domain is a unique factorisation domain.

The converse is not true in general. For example, Z[-] is not a PID (as an earlier exercise showed), but it is a UFD:
every polynomial factors as a product of irreducible polynomials.

1Hint: look at rings of polynomials.
2Hint: Look at Z[

√
5].
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1.1.1 Modules

Given a ring ', we say" is an '-module if" is an abelian group andwe have a ring homomorphism ' → End(").
Informally, ' “acts” on "; for each A ∈ ', the map < → A< is a group homomorphism, and the composition of maps
corresponds to multiplication of the ring elements. A subgroup # ≤ " is called an '-submodule of " if A# ⊂ # for
all A ∈ '.
Exercise 8. Consider ' as an '-module with left multiplication. What are its '-submodules?

We say ( ⊂ " is a generating set for " as an '-module if " is generated by '-linear combinations of (. For
example, Z[

√
2] is generated by {1,

√
2} as a Z-module. Every ring is generated by {1} as a module over itself. An

'-module " is free if " �
⊕

8∈� '08 as an '-module for some {08 : 8 ∈ �} ⊂ " .
Exercise 9. Give an example of a Z-module that is not free.

A result we will need for later manipulations is the following.

Theorem 1.3. If " is a free module over a PID ', and # ≤ " , then # is also a free '-module. If " and # have the
same finite rank, and � is a transition matrix from a basis of " to a basis of # , then

| det(�) | = |" : # |.

An '-module " is Noetherian if every ascending chain of submodules has a maximal element. Equivalently, if
every submodule is finitely generated over '. A ring ' is Noetherian if it is Noetherian as an '-module; equivalently,
if every ideal is finitely generated.
Exercise 10. Give an example of a ring that is not Noetherian.

Proposition 1.4. If ' is a Noetherian ring, every finitely generated '-module is Noetherian.

Exercise 11. Give an example of a ring ', an '-module " , and a submodule # ≤ " such that " is finitely generated
over ' but # is not.3

1.1.2 Polynomial rings

Our first goal is to determine which properties of ' extend to '[-], any by extension to any polynomial ring over
'.

Theorem 1.5 (Hilbert’s basis theorem). If ' is a Noetherian ring, then '[-] is a Noetherian ring.

Note that “'[-] is Noetherian as a ring” is different from “'[-] is Noetherian as an '-module”. The first statement
is what we will prove, and the second statement is false.
Exercise 12. Show that '[-] is not Noetherian as an '-module.

Proof. Suppose � C '[-] is not finitely generated. By induction, we can construct a sequence of polynomials
?0, ?1, . . . , ?=, · · · , where ?= ∈ � \ 〈?0, . . . , ?=−1〉 is chosen to be a polynomial of least degree. By construction,
deg(?=) is nondecreasing. Let 0= ∈ ' be the leading coefficient of ?=. The chain of ideals 〈00〉 ⊂ 〈00, 01〉 ⊂ . . .
terminates at some step, say at 〈00, . . . , 0#−1〉. Write 0# =

∑#−1
8=0 A808 . Define

6(-) =
#−1∑
8=0

A8-
deg(?# )−deg(?8) ?8 (-) ∈ '[-] .

Then, 6(-) ∈ �, deg(6) = deg(?# ), and 6 − ?# ∈ � \ 〈?0, . . . , ?#−1〉 is a polynomial of smaller degree than ?# , a
contradiction.

Proposition 1.6. If  is a field, then  [-] is a PID.

3Hint: every ring is a module over itself.
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Proof. Given two polynomials 0(-), 1(-) ∈  [-], there exist unique polynomials @(-), A (-) ∈  [-] such that
0(-) = @(-)1(-) + A (-), with A (-) = 0 or 0 ≤ deg

(
A (-)

)
< deg

(
0(-)

)
. Using this, now show that any nonzero

ideal � C '[-] is generated by the polynomial of least degree.

Proposition 1.7. If ' is a UFD, then '[-] is a UFD.

The crux of the proof is Gauss’s lemma.

Definition 1.8. A polynomial ?(-) = 00 + 01- + · · · + 0=-= ∈ '[-] is primitive if the ideal 〈00, 01, · · · , 0=〉 = '.
When ' is a UFD, this is equivalent to saying that the GCD of the coefficients of ? is equal to 1.

Theorem 1.9 (Gauss’s lemma). If ?(-), @(-) ∈ '[-] are primitive polynomials, so is their product ?(-)@(-).

Proof. NOTE: improve the proof fromhere https://math.stackexchange.com/questions/2974813/is-content-multiplicative-
if-the-ring-is-only-integrally-closed

Let �? , �@ , and �?@ C ' be the ideals generated by by ?(-), @(-), and ?@(-) respectively. By definition,
�?@ ⊂ � (?) and �?@ ⊂ �@ , so if ?@ is primitive, then ? and @ are primitive.

Conversely, suppose ? and @ are primitive but ?@ is not. Then, �?@ is contained in some proper maximal ideal
" C '. Since ? and @ are primitive, they are nonzero in '�" , but their product ?@ + '�" = 0. '�" is a field, so it
is not possible for the product of two nonzero elements to be zero, giving us the desired contradiction.

Now that we have studied some properties of the ring '[-], we will look at properties of its polynomials. Suppose
� ≤ � are rings, and 1 ∈ � is the root of a monic polynomial in �. There is a unique monic polynomial<1 (-) ∈ �[-]
such that <1 (1) = 0. Further, if ?(1) = 0 for some polynomial ?(-) ∈ �[-], then <1 (-) |?(-). We call this the
minimal polynomial of 1 over �.
Exercise 13. <1 (-) is irreducible in �[-].
Example 1.10. The minimal polynomial depends on the ring �. For example, the minimal polynomial of

√
2 in Z[-]

is -2 − 2, but in R[-] it is - −
√

2.
Let l ∈ C be a primitive third root of unity. The minimal polynomial of l is not -3 − 1. We have the factorisation

-3 − 1 = (- − 1) (-2 + - + 1), so -3 − 1 is irreducible in Z[-]. The minimal polynomial of l is in fact -2 + - + 1.
In general, if Z is a primitive =th root of unity, its minimal polynomial in Z[-] has degree q(=), where q is the Euler
totient function. The minimal polynomials of the roots of unity are called cyclotomic polynomials.
Exercise 14. If 0 ∈ Q is the root of a monic polynomial in Z[-], then 0 ∈ Z.
Exercise 15. Let ' be a UFD and  its field of fractions. If 0 ∈  is the root of a monic polynomial in '[-], then
0 ∈ '.

We conclude this subsection with an important criterion for a polynomial to be irreducible.

Theorem 1.11 (Eisenstein’s criterion). Let ' be a commutative integral domain, and ?(-) = 00 + 01- + · · · + 0=-= ∈
'[-]. Suppose there exists a prime ideal p C ' such that

(i) 08 ∈ p for 8 = 0, . . . , = − 1,

(ii) 0= ∉ p, and

(iii) 00 ∉ p
2.

Then ?(-) cannot be written as the product of two non-constant polynomials in '[-]. If ?(-) is primitive, then it is
irreducible in '[-].

A polynomial that satisfies these conditions is called an Eisenstein polynomial. This is a necessary but not sufficient
condition for irreducibility. For example, the polynomial -2 + 1 ∈ Z[-] is not Eisenstein for any prime in Z, but it is
irreducible.
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1.2 Extensions
Suppose � is a ring, and U is an element of �, another ring. Define the ring of formal sums

�[U] =
{ =∑
8=0

08U
8 : 08 ∈ �, = ∈ N

}
with addition andmultiplication defined as onewould expect. For example, whenU = - , �[-] is the ring of polynomials
with coefficients in �. Of course, we can extend this definition to a finite set {U1, . . . , U: } ⊂ �, or even an arbitrary
(possibly infinite) subset ( ⊂ �. We are typically interested in the case when � is a subring of �, and the formal
sums satisfy some sort of recursion. For example, if � = Z, � = R, and U =

√
2, then

√
2

2
= 2 ∈ Z. We would like to

differentiate between the “dimension” of Z[-] and Z[
√

2] over Z. In the first case, no monomial -= can be expressed
as a Z-linear combination of 1, -, . . . , -=−1, and the formal sums

∑=
8=0 08-

8 can have arbitrarily many terms. In Z[
√

2],
however, each term can be expressed uniquely as 0 + 1

√
2. This corresponds exactly to the structure of Z[-] and Z[

√
2]

as Z-modules.
If � ≤ �, we call the dimension of � as an �-module the degree of the extension �/�. Note that even though the

ring Z[-] is obtained by adjoining one element to Z, its degree is infinite.
Now suppose  and ! are fields, and ! is an extension of  , i.e.  is a subfield !.  and ! are also rings, so we

extend the same definitions to the extension !/ . In particular, the degree of the extension, denoted |! :  |, is the
dimension of ! as a  -vector space.

Proposition 1.12. Given three fields  ≤ ! ≤ " ,

|" :  | = |" : ! | · |! :  |.

Unfortuntately, composite fields do not satisfy such a nice identity in general. If  1 and  2 are subfields of a field
 , let  1 2 denote the field generated by  1 and  2, or the smallest subfield of  containing  1 and  2. The field
 1 2 is referred to as the composite field.

Proposition 1.13. If  1 and  2 are finite extensions of �, then

| 1 2 : � | ≤ | 1 : � | · | 2 : � |.

Exercise 16. If | 1 : � | and | 2 : � | are coprime, then we have equality in the above proposition.
Remark. If �[(] is the ring obtained by adjoining the elements of ( to �, we denote by �(() its field of fractions. The
field of fractions of �[-], �(-), is called the field of rational functions over �: these are the quotients of polynomials.
An important result that we will need is that if  is a field, and  [(] is finitely generated4, then  [(] =  ((). In
particular, any finitely generated ring extension of a field is itself a field.

1.2.1 Integrality

Definition 1.14. If � ≤ � are rings, we say 1 ∈ � is integral over � if it is the root of a monic polynomial with
coefficients in �. We say � is integral over � if every element of it is integral over �.

Proposition 1.15. The elements 11, . . . , 1= are integral over � if and only if �[11, . . . , 1=] is a finitely generated
�-module.

Proof. Consider the case when we have just one element, 1. If 1 is integral over �, let 5 (-) = -= +0=−1-
=−1 + · · · +00

be its minimal polynomial over �. By induction, for any < ≥ =, 1< ∈ �[1, 1, . . . , 1=−1], so �[1] is generated by
{1, 1, . . . , 1=−1}.

4This is an important condition! For example,  [- ] ≠  (- ) .
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For the converse, suppose �[1] is a finitely generated �-module. At most finitely many of the elements {1= : = ∈ N}
can be algebraically independent over �. There is an integer = so that 1= ∈ �[1, 1, . . . , 1=−1]. If 1= = 0=−11

=−1 + · · · +
011 + 00, then 1 is the root of -= − 0=−1-

=−1 + · · · + 01- + 00 ∈ �[-].
For larger =, the proof follows easily by induction considering the chain � ≤ �[11] ≤ · · · ≤ �[11, . . . , 1=−1] ≤

�[11, . . . , 1=−1, 1=].

An easy application of the previous proposition also shows that if � ≤ � ≤ �, � is integral over �, and� is integral
over �, then � is integral over �.

Corollary 1.16. The integral elements in � over � form a subring.

Define the integral closure of � in � as the subring of integral elements. We say an integral domain is integrally
closed if it is equal to its integral closure in its field of fractions. For example, an earlier exercise showed that every
UFD is integrally closed.

For fields, we say an element is algebraic over a field  if it is the root of a monic polynomial over  . We say !
is algebraic over  if every element of it is algebraic over  . As an important corollary of the work we have done for
rings,

Corollary 1.17. Every finite extension of fields !/ is algebraic.

If U is not algebraic over  , we say it is transcendental.

Corollary 1.18. If U is transcendental over  ,  [U] is infinite-dimensional over  .

Suppose � is an integrally closed domain,  its field of fractions, ! a finite extension of  , and � the integral
closure of � in !. We refer to this setup as � !�.

Claim 1.19. The following hold:

(i) � is integrally closed.

(ii) Any V ∈ ! can be expressed as 1/0 for 1 ∈ � and 0 ∈ �.

(iii) V ∈ ! is integral over � if and only if its minimal polynomial over  has coefficients in �.

Proof. (i) follows from the definition. For (ii), multiplying the minimal polynomial of V in  [-] by a “common
denominator”, we obtain a polynomial 0=-= + 0=−1-

=−1 + · · · + 01- + 00 ∈ �[-] of which V is a root. Multiply this
polynomial by 0=−1

= , and set 1 = 0=V. Then 1 ∈ ! is the root of a monic polynomial over �, so 1 ∈ � and V = 1/0=.
For (iii), the implication ⇐= is clear. For the converse, let <�(-) ∈ �[-] and < (-) ∈  [-] are the minimal
polynomials of V over � and  respectively. Then, < (-) divides <�(-) in  [-], so the roots of < (-) are integral
over �. The coefficients of < (-) are linear combinations of the roots, so they are integral over � as well. Since � is
integrally closed, < (-) ∈ �[-].

In particular, when � = Z and  = Q, we say ! is a number field and � is the ring of integers in !.

1.3 Galois theory

Let  be a field. The algebraic closure of  , denoted usually by  ̄ , is the unique algebraic extension of  such that
every polynomial in  [-] splits into linear factors over  ̄ . Equivalently, we obtain it by adjoining all roots of monic
polynomials over  to  .
Exercise 17. Suppose U is algebraic over  and ?(-) ∈  [-] is its minimal polynomial. Show that

 [U] �  [-]�(
?(-)

) .
Exercise 18. Show that every field has an algebraic closure.5

5Hint: use Zorn’s lemma.
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We say a polynomial 5 (-) ∈  [-] is separable if it has no repeated roots. That is, if U is a root of 5 (-), then
(- − U)2 does not divide 5 (-). Let ! be an extension of  .6 We say an element U ∈ ! is separable over  if its
minimal polynomial over  is separable. We say ! is separable if every element of ! is separable over  . Equivalently,
if for any U ∈ !, its minimal polynomial over  splits into distinct linear factors over the algebraic closure of  .
Exercise 19. Apolynomial 5 (-) ∈  [-] is separable if and only if it is coprime to its formal derivative� 5 (-) ∈  [-].
As a consequence, 5 (-) is inseparable if and only if � 5 is identically 0.
Exercise 20. Let  be a field of prime characteristic ?. A polynomial 5 (-) ∈  [-] is inseparable if and only if
5 (-) = 6(- ?) for some 6(-) ∈  [-].
Exercise 21. If char = 0 or if  is a finite field, then every irreducible polynomial is separable.7

Most of the fields we deal with will be extensions of Q, so separability will not be a concern.
Example 1.20. Let ! = F? (C) be the field of rational functions over F? in the indeterminate C. This is an infinite
field with characteristic ?. Consider the subfield  = F? (C ?) of !. The minimal polynomial of C ∈ ! over  is
- ? − C ? = (- − C) ? , which is inseparable.

We say the extension !/ is normal if for any U ∈ !, its minimal polynomial over  splits in !. Equivalently, if
an irreducible polynomial 5 (-) ∈  [-] has one root in !, it has all its roots in !.
Example 1.21. Consider the field Q[

√
2]. This is both separable and normal; the roots of the minimal polynomial of

an element 0 + 1
√

2 are 0 ± 1
√

2. On the other hand, Q[ 3√2] is not a normal extension of Q. If l is a primitive 3rd root
of unity, the roots of the polynomial -3 − 2 are 3√2, l 3√2, and l2 3√2. The polynomial -3 − 2 has one root in Q[ 3√2],
but not all. Nevertheless, |Q[ 3√2] : Q| = 3, generated by {1, 3√2, 3√4}.

We say an extension !/ is Galois if it is both separable and normal. An important example of a Galois extension
of  is the splitting field of a separable polynomial 5 (-) ∈  [-]. This is the smallest extension of  in which 5 (-)
splits, or the extension obtained from  by adjoining all roots of 5 (-).
Exercise 22. Technically, a splitting field of 5 (-) ∈  [-] is a minimal field extension of  in which 5 (-) splits into
linear factors. Prove that if !1 and !2 are two splitting fields of 5 (-), then !1 � !2, justifying the phrase “the splitting
field”.8
Example 1.22. We know the extension & [ 3√2]/Q is not Galois. The splitting field of -3 − 2 is in fact Q[l, 3√2]. The
degree of this extension |& [l, 3√2] : Q| = 6, as it is generated by {1, 3√2, 3√4, l, l 3√2, l 3√4}. This is worrisome because
we would like the splitting field of 5 (-) to have the same degree as the degree of 5 (-). The trükk here is that we
are looking at this as the splitting field of the wrong polynomial. In an ideal world, a splitting field of 5 (-) would
be obtained from  by adjoining exactly one root of it, and letting the others follow. In this case, we need to write
Q[l, 3√2] = Q[l + 3√2]. The minimal polynomial of l + 3√2 has degree 6, and this is its splitting field.
Exercise 23. If 5 (-) ∈  [-] has degree =, its splitting field has degree at most =!.

Proposition 1.23. If ! =  [\] is separable and ! is the splitting field for 5 (-) ∈  [-], the minimal polynomial of
\, then !/ is Galois and |! :  | = deg( 5 ).

We say ! is simple if ! =  [\] for some \ ∈ !. \ is called a primitive element. We will use the following highly
nontrivial fact.

Theorem 1.24. Any finite separable extension is simple.

Definition 1.25. The Galois group of !/ , Gal(!/ ), is the group of field automorphisms of ! that fix  .

Gal(!/ ) = {f : f is a field automorphism of !, f | = 83 | }.

If U ∈ ! and f ∈ Gal(!/ ), we call f(U) a Galois conjugate of U.

6The letters ! and  will almost surely almost always denote fields.
7Hint: If  is a finite field of characteristic ?, then 0? + 1? = (0 + 1) ? .
8Hint: if U and V have the same minimal polynomial in  [- ], then  [U] �  [V ].
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Exercise 24. If U ∈ ! is a root of 5 (-) ∈  [-], so are its Galois conjugates.
Example 1.26. Let us return to Q[ 3√2]. Any automorphism in Gal(Q[ 3√2]/Q) must map 3√2 to a root of -3 − 2, so it
must fix 3√2. So Gal(Q[ 3√2]/Q) is the trivial group; 1 = |Gal(Q[ 3√2]/Q) : Q| < |Q[ 3√2] : Q| = 3.

Proposition 1.27. For any field extension !/ , |Gal(!/ ) | ≤ |! :  |.

We call a field extension !/ Galois if it is both normal and separable. The normal closure of a separable extension
is the smallest Galois extension containing it.

Proposition 1.28. A finite extension !/ is Galois if and only if |Gal(!/ ) | = |! :  |.

Proposition 1.29. Let  ̄ denote the algebraic closure of  and ! be a finite separable extension of  . Any embedding
of  into  ̄ extends to exactly |! :  | embeddings of ! into  ̄ .

Corollary 1.30. Let !/ be a finite separable extension and Hom (!,  ̄) denote the embeddings of ! into  ̄ that fix
 . Then |Hom (!,  ̄) | = |! :  |.

Proof of proposition 1.29. We proceed by induction on =. When = > 1, let U ∈ ! \  . Let |! :  [U] | = ; and
| [U] :  | = : , so that = = :;. There are exactly : embeddings of  [U] into  ̄ that extend the embedding of  into  ̄ ,
corresponding to the roots of the minimal polynomial of U. By induction, each of these embeddings extends to exactly
; embeddings of !/ [U] into  ̄ , completing the proof.

Exercise 25. If ! is a splitting field for 5 (-) ∈  [-], then |Gal(!/ ) | ≤ |! :  |, with equality if 5 (-) is separable.9
The relationship between subgroups of Gal(!/ ) and subfields of ! is inclusion reversing. If  ≤ ! ≤ " , then

Gal("/!) ≤ Gal("/ ). Given a finite extension ! of  , we can define a correspondence between intermediate fields
 ≤ � ≤ ! and subgroups of Gal(!/ ). Namely, for any subgroup � ≤ Gal(!/ ), the corresponding fixed field  �
is the subfield of ! fixed by �. Conversely, given an intermediate field �, the corresponding subgroup is the set of
elements of Gal(!/ ) fixing �.
Exercise 26. Convince yourself that if � ≤ Gal(!/ ), then the set of elements of ! fixed by � is a field. Conversely,
that if  ≤ � ≤ !, the set of elements of Gal(!/ ) fixing � is a group.
Example 1.31. There are no nontrivial intermediate fields for Q[

√
2] or Q[ 3√2]. (Why?) A straightforward but tedious

calculation shows that
Gal(Q[l + 3√2]/Q) = (3

(Our first example of a nonabelian Galois group!) The following theorem tells us how to look for its intermediate fields.

Theorem 1.32 (Fundamental theorem of Galois theory). The correspondence between intermediate fields of !/ and
subgroups of Gal(!/ ) is one-to-one if and only if ! is a Galois extension of  . Further, an intermediate field  � is
Galois if and only if the corresponding subgroup � is normal, in which case Gal( � / ) = Gal(!/ )/�.

Example 1.33. (3 has a unique subgroup of order 3 and index 2, and this corresponds to the field Q[l] which is a
degree 2 extension ofQ. This subgroup is normal, soQ[l] is a Galois extension ofQ. However, (3 has three subgroups
of order 2, corresponding to the intermediate fields Q[ 3√2], Q[l 3√2], and Q[l2 3√2]. None of these fields is Galois.
Because Q[l + 3√2] is Galois, these determine all its intermediate fields.

9Hint: Take an irreducible factor ? (- ) of 5 (- ) and let U ∈ ! be a root of ? (- ) . For fixed f ∈ Gal(!/ ) , how many possibilities exist for
f | [U]? Now proceed by induction with the extension !/ [U].
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Q[l + 3√2]

Q[l ]

Q[ 3√2] Q[l 3√2] Q[l2 3√2]

Q

Exercise 27. Let 5 (-) ∈ Z[-] be an irreducible monic polynomial such that the Galois group of its splitting field is
abelian. If it has one root U ∈ � such that |U | = 1, show that all of its roots have absolute value 1.
Exercise 28. Let U be an algebraic integer whose Galois conjugates all have absolute value 1. Show that U is a root of
unity.

Finally, let us look at the Galois theory of finite fields F? . For proofs and more see [1].
Exercise 29. Show that:

(i) A finite integral domain is a field.

(ii) Every finite field has prime power order, and for every prime power there is a unique finite field of that order.

(iii) The multiplicative group � of a finite field is cyclic.10

The following classification is extremely important, and we will revisit the Frobenius automorphism later. The
proof of the theorem is left as an exercise. (It follows easily from the results in this section.)

Theorem 1.34. Any finite extension of F@ is of the form F@= , and |F@= : F@ | = =. The field F@= is the splitting field of
-@

= − - over F@ . Its Galois group is cyclic and generated by the Frobenius automorphism

f : G → G@ .

2 Rings of integers

The ring of integers Z is a Euclidean domain (hence a PID, and hence a UFD), and it is integrally closed in Q:
any rational number that is the root of a polynomial in Z[-] is an integer. We say  is a number field if  is a finite
extension of Q. What is the analog of the integers in  ? Intuitively, we would like this to be the set of elements of  
that are the corresponding “extension” of Z; this is not far from the truth. In this section, we will show that the ring of
integers of a number field is finitely generated, and then see how these generators correspond to the generators of  /Q.

2.1 Trace, norm, and discriminant
For the rest of this section, we assume ! is a finite extension of  .

10Hint: let �3 be the set of elements of � that have order 3. Show that |�3 | ≤ q (3) .
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2.1.1 The trace and norm

Definition 2.1. The trace and norm of 0 ∈ ! are the trace and determinant respectively of the -linear map)0 : ! → !,
)0 (G) = 0G.

It follows immediately that these induce homomorphisms

Tr!/ : ! →  ,

Nm!/ : !× →  ×.

Sometimes we will drop the subscript and simply write Tr(0) or Nm(0), when the extension !/ is clear from context.
Example 2.2. Consider the extension Q[8]/Q, and choose the basis {1, 8}. For an element 0 + 18 ∈ Q[8], the matrix of
the corresponding linear map in this basis is given by

)0+18 =

[
0 −1
1 0

]
.

Thus, Tr(0 + 18) = 20, and Nm(0 + 18) = 02 + 12.
Exercise 30. Let � ∈ Z be a squarefree integer and  = Q[

√
�]. For 0, 1 ∈ Z, show that Tr /& (0 + 1

√
�) = 20 and

Nm /& (0 + 1
√
�) = 02 − �12.

The following theorem gives an extremely useful characterisation of the trace and norm with the Galois group.

Theorem 2.3. Let !/ be a separable extension and f : ! →  ̄ vary over Hom (!,  ̄). For any 0 ∈ !, if
50 (-) ∈  [-] is the characteristic polynomial of the linear map )0 : ! → ! as above, then,

(1) 50 (-) =
∏
f (- − f0),

(2) Tr!/ (0) =
∑
f f0, and

(3) Nm!/ (0) =
∏
f f0.

Proof. It suffices to prove (1), as (2) and (3) follow by examining the coefficients of the characteristic polynomial. Fix
0 ∈ !, and consider the tower of field extensions  ≤  [0] ≤ !. Let |! :  [0] | = ; and | [0] :  | = : . The minimal
polynomial <0 (-) = - : + 0:−1-

:−1 + · · · + 01- + 00 ∈  [-] of 0 over  has degree : (why?), and {1, 0, . . . , 0:−1}
is a basis of  [0]/ . Choose a basis 11, . . . , 1; of !/ [0] so that {110

8 , . . . , 1;0
8 : 0 ≤ 8 ≤ : − 1} is a basis of !/ .

The matrix of )0 in this basis is block diagonal, with each block equal to
0 . . . 0 −00
1 . . . 0 −01

. . .

0 . . . 1 −0:−1

 .
It now follows that the characteristic polynomial satisfies 50 (-) =

(
<0 (-)

) ; .
Define an equivalence relation ∼ on Hom (!,  ̄) by f ∼ g if and only if f(0) = g(0). This defines exactly :

equivalence classes with ; elements each. (Why?) Choose a system of representatives f1, . . . , f: . It follows that

<0 (-) =
:∏
8=1
(- − f8 (0)), and

50 (-) =
:∏
8=1
(- − f8 (0)); =

∏
f

(- − f(0)).

Exercise 31. If !/ is Galois, then Hom (!,  ̄) = Gal(!/ ).
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Exercise 32. Show that if | : Q| = 2, then  = Q[
√
�] for a squarefree integer � ∈ Z.11

Example 2.4. For I ∈ Q[8], its Galois conjugates over Q are I and Ī, its complex conjugate. The minimal polynomial
of I is -2 − (I + Ī) + IĪ.

Consider the extension Q[ 3√2]/Q, which is not Galois. HomQ (Q[ 3√2],Q) = {f1, f2, f3}, where f1 ( 3√2) = 3√2,
f2 ( 3√2) = l 3√2, and f3 ( 3√2) = l2 3√2. The “conjugates” of an element 0 + 1 3√2 + 2 3√4 are given by 0 + 1 3√2 + 2 3√4,
0 + 1l 3√2 + 2l 3√4, and 0 + 1l2 3√2 + 2l2 3√4. Let  = Q[ 3√2]. The theorem tells us that Tr /Q ( 3√2) = 0 and
Nm /Q ( 3√2) = 2.

Now take the normal closure of  , the field ! = Q[l + 3√2]. Recall that |Gal(!/Q) | = 6, determined by the
images of 3√2 and l. With the same notation as the theorem, < 3√2 (-) = -3 − 2, but the characteristic polynomial
5 3√2 (-) =

(
-3 − 2

)2. In this extension, Nm!/Q ( 3√2) = 4. The trace and norm are not intrinsic properties of an element,
but depend on the extension (as the next corollary will show).

Corollary 2.5. If  ≤ ! ≤ " are finite extensions, Tr!/ ◦ Tr"/! = Tr"/ and Nm!/ ◦ Nm"/! = Nm"/ .

Proof. Let us only concern ourselves with the case when both extensions are separable so we can apply the previous
theorem. The statement is also true for inseparable extensions, but the proof is more complicated.

Since ! is algebraic over  , !̄ =  ̄ . Define an equivalence relation ∼ on Hom (",  ̄) by f ∼ g if f(!) = g(!).
Hom! (",  ̄) forms one equivalence class, and there are ; = |! :  | equivalence classes of < = |" : ! | elements
each. Choose representatives f1, . . . , f; . The equivalence class of f8 is Homf8 (!) (f8 ("),  ̄), and Hom (!,  ̄) =
{f1 |! , . . . , f; |!}.

Tr"/ (0) =
∑
f

f(0) =
;∑
8=1

∑
f∼f8

f(0) =
;∑
8=1

Trf8 (" )/f8 (!) (f80) =
<∑
8=1

f8Tr"/! (0) = Tr!/ ◦ Tr"/! (0)

The equality for the norm is analogous.

Exercise 33. Where did we use separability?

Corollary 2.6. Given � !�12, if 1 ∈ �, then Tr!/ (1) and Nm!/ (1) are in �.

Exercise 34. Show that 0 + 18 ∈ Z[8] if and only if TrQ[8 ]/Q (0 + 18) ∈ Z and NmQ[8 ]/Q (0 + 18) ∈ Z.

Exercise 35. Let  = Q[
√

5]. Show that Tr /Q
( 1+
√

5
2

)
∈ Z and Nm /Q

( 1+
√

5
2

)
∈ Z.

Exercise 36. Show that if  is a number field and � its ring of integers, then the units of � are the elements of norm
±1, i.e.

{1 ∈ � : 1−1 ∈ �} = {1 ∈ � : Nm /Q (1) = ±1}.

2.1.2 The discriminant

Now suppose {U1, . . . , U=} is a basis of !/ .

Definition 2.7. The discriminant of the basis is defined as the determinant of the matrix
(
Tr!/ U8U 9

)=
8, 9=1

.

Exercise 37. Find the discriminant of the basis {1,
√
�} of Q[

√
�], where � ∈ Z is a squarefree integer.

Let Hom (!,  ̄) = {f1, . . . , f=}. Then

Tr!/ (U8U 9 ) =
=∑
:=1
(f:U8) (f:U 9 ),

11Hint: find an element 0 ∈  such that Tr(0) = 0 and Nm(0) is a squarefree integer.
12� is an integrally closed domain,  its field of fractions, ! a finite extension of  , and � the integral closure of � in !.
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so the matrix
(
Tr!/ U8U 9

)=
8, 9=1

is the product of the matrices
(
f8U 9

)) (
f8U 9

)
, and

3 (U1, . . . , U=) = det
(
f8U 9

)2

The following lemma is elementary linear algebra:

Lemma 2.8. If {V1, . . . , V=} is a basis for !/ and U1, . . . , U= ∈ !, write

U 9 =

=∑
8=1

0 98V8

for each 9 = 1, . . . , =. {U1, . . . , U=} is a basis for !/ if and only if det
(
08 9

)
is invertible. In this case,

3 (U1, . . . , U=) = det
(
08 9

)2
· 3 (V1, . . . , V=).

Proposition 2.9. If !/ is finite and separable, then 3 (U1, . . . , U=) ≠ 0 and 〈G, H〉 = Tr(GH) is a nondegenerate
bilinear form.

Proof. By the lemma, it suffices to show this for a fixed basis of !/ . Every finite separable extension is simple, so
write ! =  [\], and let |! :  | = =. The matrix

(
f8\

9
)
is a Vandermonde matrix with nonzero determinant (why?), so

3 (1, \, . . . , \=−1) ≠ 0. Further, the matrix
(
Tr(\8+ 9 )

)
is the matrix associated to the bilinear form, and as it has nonzero

determinant, the form is nondegenerate.

Lemma2.10 (Dedekind’s lemma). If !/ is finite and separable, the elements ofHom (!,  ̄) are linearly independent
over  .

Proof. Let Hom (!,  ̄) = {f1, . . . , f=}. Suppose there exist 01, . . . , 0= ∈  such that

=∑
8=1

08f8 ≡ 0.

Choose a basis {U1, . . . , U=} for !/ . Then,

(
f9U8

)=
8, 9=1
·

01
...

0=

 =

∑=
9=1 0 9f9 (U1)

...∑=
9=1 0 9f9 (U=)

 =

0
...

0

 .
Since det

(
f9U8

)
≠ 0, it follows that 08 = 0 for all 8 = 1, . . . , =.

Theorem 2.11 (Hilbert 90). Let !/ be Galois with cyclic Galois group of order = generated by f. For U ∈ !,
Nm!/ (U) = 1 if and only if U = V/f(V) for some V ∈ !.

Proof. The direction ⇐= follows from the multiplicativity of the norm. Conversely, given U ∈ ! of norm 1, we want
to find V ∈ ! such that V = Uf(V). In other words, we want a nonzero fixed point of the operator Uf defined by
Uf(G) = U · f(G). Choose any W ∈ ! and suppose Uf(W) ≠ W. Set

V = W + Uf(W) + (Uf)2 (W) + · · · + (Uf)=−1 (W)

Then
(Uf)= = Uf(U) . . . f=−1 (U) = Nm!/ (U) = 1

is the identity map, so V is a fixed point of Uf. Since 1, f, . . . , f=−1 are linearly independent by Dedekind’s lemma, V
is nonzero.
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One interpretation of Hilbert’s theorem 90 is that an element U has norm 1 if and only if the linear map Uf has an
eigenvector with eigenvalue 1. Here is an interesting application of the theorem to classification of Pythagorean triples.
A Pythagorean triple is a triple 0, 1, 2 ∈ Z such that 02 + 12 = 22, and the integers are pairwise coprime. Equivalently,
setting  = Q[8], Nm /Q (0 + 18) = 22, or Nm /Q ( 02 +

1
2
8) = 1. By Hilbert’s theorem 90, there exist coprime integers

D, E ∈ Z such that

0

2
+ 1
2
8 =

D + E8
D − E8 =

D2 − E2

D2 + E2 +
2DE

D2 + E2 8.

This implies that 0 = D2 − E2, 1 = 2DE, and 2 = D2 + E2, so any Pythagorean triple has this form. Conversely, any
integers satisfying these identities form a Pythagorean triple.
Exercise 38. Let  be a field containing a primitive =th root of unity, and !/ an extension such that Gal(!/ ) = Z=.
Show that ! =  [U1/=] for some U ∈  .
Remark. We do not need � to be free as an �-module in order to make sense of the discriminant. Each element 1 ∈ �
defines a  -linear map, so its trace is well-defined. It follows from theorem 2.3 that if {11, . . . , 1=} is a basis for � as an
�-module, then its discriminant 3 (11, . . . , 1=) ∈ �. Further, if {11, . . . , 1=} and {21, . . . , 2=} are bases of �/�, then
their respective discriminants differ only by a unit of �. We can refer to the discriminant of �/� as the ideal generated
by the discriminant of some basis.

2.1.3 Integral bases

Definition 2.12. Suppose � !� and |! :  | = =. We say {F1, . . . , F=} ⊂ � is an integral basis for !/ if it is a
basis for !/ and � =

⊕
� · F8 as a free �-module.

Example 2.13. {1, 8} is an integral basis for Q[8].
Exercise 39. {1,

√
5} is not an integral basis for Q[

√
5].

Proposition 2.14. If {U1, . . . , U=} ⊂ � is a basis of !/ and 3 = 3 (U1, . . . , U=), then

3 · � ⊂
=⊕
8=1

� · U8 ⊂ �.

Proof. The second inclusion is clear; for the first, we need to show that 3V ∈
⊕=

8=1 � · U8 for each V ∈ �. Write

V = G1U1 + · · · + G=U= : G1, . . . , G= ∈  .

By corollary 2.6, for 8, 9 = 1, . . . , =, Tr(U8V) and Tr(U8U 9 ) are in �. Define " =

(
Tr(U8U 9 )

)=
8, 9=1

∈ �=×=, and
G = (G8)=8=1 ∈  

=. Then,
"G = (Tr(U8V))=8=1 ∈ �

=,

so if "∗ ∈ �=×= is the adjoint13 of " ,
"∗"G = det(")G = 3G ∈ �=.

In particular, 3G8 ∈ � for each 8, so 3V ∈
⊕=

8=1 � · U8 .

Theorem 2.15. If � is a PID and !/ is separable, then � has an integral basis (� is a free �-module).

13Recall that the adjoint " ∗ is defined by " ∗
8, 9

= (−1)8+ 9 det" (8, 9) , where " (8, 9) is the submatrix of " obtained by deleting the 8th row
and 9 th column. If " ∈ �=×=, so is " ∗, as taking adjoints is closed under the ring operations.
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Proof. This is really a corollary: let {U1, . . . , U=} ⊂ � be a basis for !/ and 3 its discriminant. Then,

=⊕
8=1

�U8 ⊆ � ⊆
=⊕
8=1

�
U8

3
.

Every submodule of a free module over a PID is free, so � is a free �-module. The two inclusions imply that � has
rank = as an �-module, so � =

⊕=

8=1 �F8 where {F1, . . . , F=} is a basis of !/ .

Corollary 2.16. The ring of integers in a number field is finitely generated (and free) as a Z-module.

Exercise 40. Suppose � !� where � is a PID and !/ is separable. Any ideal � C � is a free �-module of the same
rank as �.
Exercise 41. Suppose ! is a number field. Show that the discriminant of an integral basis is independent of the choice
of basis.

From now on, whenwe refer to the discriminant of a number field, wewill mean the discriminant of an integral basis.
For number fields, we can generalise the definition of discriminant to ideals � C �, as they are also free Z-modules.

Definition 2.17. Suppose ! is a number field and � its ring of integers. For any ideal � C �, if � =
⊕=

8=1 ZF8 , define

3 (�) = 3 (F1, . . . , F=).

Exercise 42. Show that when ! is a number field, 3 (�) is independent of the choice of basis.

Proposition 2.18. Suppose ! is a number field and � its ring of integers. If � ≤ � ′ are ideals in �, then

3 (�) = |� ′ : � |2 · 3 (� ′).

Proof. Fix bases for � and � ′, and let " ∈ Z=×= be the transition matrix from � ′ to �. On one hand,

3 (�) = det(")23 (� ′)

and on the other hand by theorem 1.3, det(") = |� ′ : � |, completing the proof.

The following sequence of exercises determine the discriminants of quadratic number fields. Let � ∈ Z be a
squarefree integer, ! = Q[

√
�], and � the ring of integers in !.

Exercise 43. Given G ∈ !, show that G ∈ � if and only if Tr!/Q (G) and Nm!/Q (G) ∈ Z.

Exercise 44. Show that if � ≡ 1 (mod 4), then � = Z ⊕ Z
(

1+
√
�

2

)
. If � ≡ 2 or 3 (mod 4), then � = Z ⊕ Z

√
�.

Exercise 45. Let 3 be the discriminant of !. Show that 3 = � if � ≡ 1 (mod 4), and 3 = 4� if � ≡ 2 or 3 (mod 4).
Finally, a natural question to ask is whether the discriminant is multiplicative, and the answer is: almost.

Proposition 2.19. Let !< and != be Galois extensions of  of degree < and = respectively such that !1 ∩ !2 =  .
Let {U1, . . . , U<} (resp. {V1, . . . , V=}) be an integral basis of !< (resp. !=) with discriminant 2 (resp. 3). Suppose 2
and 3 are coprime, i.e. G2 + H3 = 1 for some G, H ∈ �. Then {U8V 9 : 8 = 1, . . . , <; 9 = 1, . . . , =} is an integral basis of
!<!= with discriminant 2=3<.

Exercise 46 (Stickelberger’s discriminant relation). Let 3 be the discriminant of a number field  . Show that 3 ≡ 0 or
1 mod 4.14

14Hint: The determinant of the matrix
(
f8F9

)
can be written as the difference of positive terms % and negative terms # . Show that 3 =

(% − # )2 = (% + # )2 − 4%# .
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2.2 Dedekind domains
What structure of Z carries over to the ring of integers?

Definition 2.20. A domain O is a Dedekind domain if it is Noetherian, integrally closed, and has dimension 1 (i.e.
every prime ideal is maximal).

Theorem 2.21. The ring of integers O in a number field  is a Dedekind domain.

Proof. O is a finitely generated Z-module, so it is Noetherian, and integrally closed by definition. Any prime ideal
p C O is a free module of the same rank, and has finite index, so O /p is a finite integral domain. In other words,
O /p is a finite field, so p is maximal.

Our goal for this section is to show that every ideal in a Dedekind domain factors uniquely as a product of prime
ideals. This extends the unique factorisation in Z, and is in fact a characterisation of a Dedekind domain. We will then
prove another characterisation of Dedekind domains involving localisations.

2.2.1 Unique factorisation of ideals

Let  be the field of fractions of O, a Dedekind domain.

Lemma 2.22. Every nonzero ideal in O contains the product of some nonzero prime ideals.

Proof. Let ( be the set of nonzero ideals which do not contain a product of nonzero prime ideals. If ( is nonempty,
since O is Noetherian, ( contains a maximal element �. The ideal � cannot be prime, so there is a product 01 ∈ � such
that 0, 1 ∉ �. Then 〈�, 0〉 and 〈�, 1〉 both contain products of nonzero prime ideals by the maximality of �, but

〈�, 0〉〈�, 1〉 = 〈�2, 0�, 1�, 01〉 ⊆ �,

so � contains a product of nonzero prime ideals.

Definition 2.23. A fractional ideal of O is a nonzero finitely generated O-submodule of  .

Exercise 47. An O-submodule � ≤  is a fractional ideal of O if and only if there exists 2 ≠ 0, 2 ∈ O such that 2� ⊂ O.
For a fractional ideal �, define �−1 = {U ∈  : U� ⊂ O}. It follows from the exercise that when � C O, �−1 is a

fractional ideal of O.

Lemma 2.24. If � C O is a nonzero ideal, and p C O is a nonzero prime ideal, then �p−1 ≠ �.

Proof. Since O ⊆ p−1, � ⊆ �p−1. We need to show that this inclusion is strict. We first prove the lemma when � = O.
Let 0 ∈ p be nonzero, and = be the least integer such that there is a product of prime ideals p1 . . .p= ⊆ 〈0〉. Since
p1 . . .p= ⊆ p and O has dimension 1, one of them, say p1 = p. By the minimality of =, p2 . . .p= ⊄ 〈0〉. Choose
1 ∈ p2 . . .p= \ 〈0〉. Then 10−1 ∉ O, but

1p ⊆ 〈0〉 =⇒ 10−1p ⊆ O =⇒ 10−1 ∈ p−1 \ O.

Now let � be an arbitrary nonzero ideal in O, and suppose for contradiction that �p−1 = �. Let � be generated by
{11, . . . , 1=} and let 0 ∈ p−1. For each 9 = 1, . . . , =, express

01 9 =

=∑
8=1

08 9 V8; 08 9 ∈ O.

Let � be the matrix
(
08 9

)=
8, 9=1

, and V = (18)=8=1. Since V is nonzero and �V = 0 · V, det(0Id − �) = 0. Then 0 ∈  is

the root of a monic polynomial with coefficients in O, so 0 ∈ O since O is integrally closed. But this implies p−1 = O,
contradicting the first part of this proof.

Lemma 2.25. If p C O is prime, then pp−1 = O.
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Proof. Since O$ p−1, p $ pp−1 ⊆ $. By the maximality of p, pp−1 = O.

We are finally ready to prove our main result.

Theorem 2.26. Every ideal of O factors uniquely as a product of prime ideals.

Proof. Suppose not. Since O is Noetherian, by Zorn’s lemma we can choose a maximal ideal � that does not factor into
a product of prime ideals. There is a prime ideal p properly containing �. Then � $ �p−1 $ O, and by the maximality
of �, �p−1 admits a factorisation �p−1 = p1 . . .pA . However,

�p−1p = �O = � = p1 . . .pAp

is a factorisation of �. This concludes the proof of existence.
For uniqueness, suppose

p1 . . .pA = q1 . . .qB ,

where p1, . . . ,pA ,q1, . . . ,qB are nonzero prime ideals in O. Since q1 . . .qB ⊆ p1, one of them, say q1 = p1. Just as in the
proof of the fundamental theorem of arithmetic, we proceed recursively to show that A = B and, after an appropriate
permutation, q8 = p8 for each 8 = 1, . . . , A .

Corollary 2.27. The set of fractional ideals of O is the free abelian group generated by the prime ideals of O.

Proof. The commutativity and associativity of fractional ideal multiplication are straightforward, and O is an identity
for this operation. Suppose � = p1 . . .pA is an ideal in O. We claim that �−1 = p−1

1 . . .p−1
A , where �−1 is as defined

earlier. Set � = p−1
1 . . .p−1

A . Clearly �� = O, so � ⊆ �−1. Conversely, if G ∈ �−1, then G� ⊂ O, and G ∈ GO = G�� ⊆ �,
so G ∈ �.

Finally, suppose � is an arbitrary fractional ideal of O. Let 2 ∈ O be nonzero so that 2� C O. Then, 2(2�)−1 is an
inverse for �.

Finally, to show that this group is freely generated by the prime ideals, let � ≤  and 2 ∈ O be as above. We can
factor the ideals 2� = pA1

1 . . . ?
A<
< and 〈2〉 = pB1

1 . . .p
B<
< , so � = pA1−B1

1 . . . ?
A<−B<
< . The freeness follows from unique

factorisation.

Exercise 48. Let O be a Dedekind domain. O is a PID if and only if O is a UFD.
Exercise 49. If O has only finitely many prime ideals, O is a PID.
Exercise 50. Each ideal in O is generated by at most two elements.

We will refer to ideals of Oas integral ideals. Let � denote the set of fractional ideals of O. Emmy Noether showed
the converse: that if � forms a group under multiplication, then O is a Dedekind domain. Let % ≤ � denote the
subgroup of principal fractional ideals.

Definition 2.28. Define the ideal class group �; = � /% . |�; | is called the class number of  .

It is clear that the class group is trivial if and only if O is a PID. Because a Dedekind domain is a PID if and only if
it is a UFD, in order to study unique factorisation in rings of integers we will instead study their class numbers.

In summary, we have the following exact sequence:

1→ O× →  × → � → �; → 1.

Exercise 51. What are the maps that make this sequence exact?
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2.2.2 Dedekind domains and localisation

Before we move on to the promised number theory, we will need another (equivalent) characterisation of Dedekind
domains. Again, all rings are commutative integral domains.

Definition 2.29. Let ( ⊂ ' be a multiplicatively closed set such that 1 ∈ ( and 0 ∉ (. Define the localisation of ' at
( as

'(−1 = {0/B : 0 ∈ ', B ∈ (},
with multiplication and addition defined as expected.

In other words, '(−1 is the intermediate ring between ' and its field of fractions in which all elements of ( are
invertible. The map 0 → 0/1 is a natural embedding of ' into '(−1. We are interested in the special case when
( = ' \ % for a prime ideal %; we denote the localisation as '% . We say a ring is a local ring if it has a unique maximal
ideal.
Exercise 52. A ring is local if and only if the set of non-units forms an ideal.

Lemma 2.30. If % C ' is a prime ideal, then '% is a local ring.

Proof. Clearly %'% is a prime ideal in '% . It suffices to show that any element outside %'% is invertible. If 0/B ∈
'% \ %'% , then 0 ∈ ' \ %, so B/0 ∈ '% \ %'% . Then 0/B is invertible, making %'% the unique maximal ideal.

Lemma 2.31. If % C ' is maximal, then
'�%= �

'%�(%'%)=.

Proof. Consider the map i : ' → '%�(%'%)= that sends i : 0 → 0
1 + (%'%)

=.

ker i = {0 ∈ ' :
0

1
∈ (%'%)=} = %=

We only need to show that i is surjective. Let B ∈ ' \ %. By induction on =, we will show that 〈%=, B〉 = '. For
= = 1, this is clear by the maximality of %. In general, if 〈%=−1, B〉 = ', then % = %〈%=−1, B〉 $ 〈%=, B〉 ≤ '. By the
maximality of %, the last inclusion must be equality. So, 1 − B · 1 ∈ %= for some 1 ∈ ', and i(1) = 1

B
+ (%'%)=. It

follows that i is surjective.

Lemma 2.32.
' =

⋂
% prime

'%

Proof. As ' embeds in each '% , clearly ' ⊆
⋂
% '% . Conversely, suppose 0 ∈

⋂
% '% . Define

� = {1 ∈ ' : 01 ∈ '}.

� is an ideal of '. If � is a proper ideal, then it is contained in a maximal ideal %. Since 0 ∈ '% , for some B ∈ ' \ %,
0B ∈ '. Then B ∈ � ⊆ %, which is not possible. This implies that � = ', so in particular 1 · 0 ∈ '.

Definition 2.33. A domain ' is a discrete valuation ring (DVR) if it is a local ring and a PID.

Corollary 2.34. DVRs are integrally closed.

Now we are ready to prove a second characterisation of Dedekind domains. In what follows, O once again denotes
a Dedekind domain.

Proposition 2.35. If O is Dedekind, so is O(−1.

Proof. For any ideal � C O(−1, � = � ∩ O is finitely generated, so � = �(−1 is finitely generated as well. Hence O is
Noetherian. Similarly, if q C O(−1 is a prime ideal, then& = q∩O is prime, therefore maximal, implying that q = q(−1

is also maximal. Finally, we need to show that O(−1 is integrally closed in its field of fractions  .  is also the field of
fractions of O. Suppose G ∈  satisfies

G= + (0=−1/B=−1)G + · · · + (00/B0) = 0.

Multiplying by a common denominator B=, we obtain a monic polynomial in BG over O. Then BG ∈ O, so G ∈ O(−1.
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Theorem 2.36. Suppose O is Noetherian. O is Dedekind if and only if Op is a DVR for every prime ideal p.

Proof. If O is Dedekind, then Op is a local ring. Op is a Dedekind domain with only one prime ideal, so it is a PID (by
an earlier exercise); by definition, it is a DVR.

Conversely, suppose Op is a DVR for every prime ideal p, and that O is Noetherian. Suppose q ≤ p are prime ideals
of O. Then qOp is a prime ideal in Op, so q = p, and O has dimension 1. Let  denote the field of fractions of O and
suppose 0 ∈  is integral over O. Then it is integral over Op for every prime ideal p. Since each Op is integrally closed,
0 ∈ ⋂

p Op = O, so O is integrally closed.

Finally,

Proposition 2.37. If ! is a finite extension of  , and O! the integral closure of O in !, then O! is a Dedekind domain.

Proof. O! is integrally closed by definition. O! is a finitely generated O-module and O ≤ O! is Noetherian, so O! is
Noetherian. LetP C O! be a prime ideal, and p = P ∩ O, so p is a prime (hence maximal) ideal in O. Let k = O/p. If
1 ∈ O!/P is nonzero, we want to show that it is algebraic over k, so that 1−1 ∈ k[1] ≤ O!/P. Choose V ∈ O! so that
V = 1 (mod P). V is the root of a monic polynomial in O [-], so 1 is the root of a monic polynomial in k[-]. This
shows that every nonzero element in O!/P is invertible.

Let O O! refer to the setup where O is a Dedekind domain,  its field of fractions, ! a finite extension of  , and
O! the integral closure of O in !.

3 Factorisation in rings of integers

We have finally developed enough theory to study factorisation in rings of integers. We will make heavy use of key
characterisations of Dedekind domains, namely that (1) every ideal factors uniquely as a product of primes, and (2) Op
is a DVR for every prime ideal p. In particular, rings of integers are Dedekind domains.

Given O O! , why do we care about the ideal class group, or the structure of units in O!? Recall that the motivation
for defining ideals is to replicate factorisation of elements. The ideal class group provides a partial answer to how much
ideals in a ring of integers behave like elements. The other part of the answer is provided by the group of units in O! .
Send each element of O×

!
to the corresponding principal ideal; its kernel is the group of units, and its cokernel the ideal

class group. The failure of this map to be an isomorphism is the failure of these groups to be trivial.
The next natural question to ask is to what extent the factorisation of ideals in O is preserved in O! . That is, any

ideal � C O factorises as a product of primes in O , but the corresponding ideal �O! C O! also factorises as a product
of primes in O! . Hilbert’s ramification theory studies the factorisation of prime ideals of O in O! .

3.1 The Gaussian integers
Before we move on to more general theory, let us warm up with the ring of Gaussian integers Z[8]. This is the ring

of integers in the extension Q[8] of Q. A classical result in elementary number theory says that

Theorem 3.1. An odd prime ? ∈ Z can be expressed as the sum of 2 squares if and only if ? ≡ 1 (mod 4).

The implication =⇒ is easy to see, as the only squares mod 4 are 0 and 1. The proof of the converse is less easy,
because it is a statement about Z[8] in disguise. A prime ? = 02 + 12 if and only if it factors as ? = (0 + 18) (0 − 18) in
Z[8]. So the question now becomes: which primes factor in Z[8]?

Lemma 3.2. Z[8] is a UFD.

Proof. We will show that Z[8] is a Euclidean domain; for any U, V ∈ Z[8], there exist unique elements d, W ∈ Z[8] such
that U = W · V + d, and 0 ≤ |d | < |V |. Since Z[8] forms a lattice in C, let W be the nearest lattice point to U

V
. Then,����UV − W���� ≤

√
2

2
< 1.

Setting d = U − W · V concludes the proof.
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Lemma 3.3. The only units in Z[8] are {±1,±8}.

Proof. Given 0 + 18 ∈ Z[8], Nm(0 + 18) = 02 + 12. By an earlier exercise, 0 + 18 is a unit if and only if 02 + 12 = 1.

Now, suppose a prime number ? factors nontrivially in Z[8] ? = U · V, where U, V ∈ Z[8] are not units. Then,
?2 = Nm(?) = Nm(U)Nm(V) in Z. Since Nm(U) ≠ 1 and Nm(V) ≠ 1, ? = Nm(U) = 02 + 12 for some 0, 1 ∈ Z.

Proof of theorem 3.1. It suffices to show that if ? ≡ 1 (mod 4), then ? is not a prime element of Z[8]. Since −1 is
a square mod ?, choose G ∈ Z so that G2 ≡ −1 (mod ?). Then, ? divides the product (G + 8) (G − 8) in Z[8], but
G
?
± 8
?
∉ Z[8], so ? does not divide either of terms. This shows that ? does not remain prime, and its factorisation

yields an expression as a sum of two squares.

We can in fact determine all the prime elements of Z[8]. We say two elements 0 and 1 are associated if 0 = D1 for
some unit D.

Theorem 3.4. Suppose c ∈ Z[8] is prime. Then c is associated to an element of one of the following forms:

i. 1 ± 8, or

ii. 0 + 18, where 02 + 12 = ? for some prime number ? ≡ 1 (mod 4), or

iii. ? for some prime number ? ≡ 3 (mod 4).

Proof. We have already seen that if c is of type ii or iii, then c is prime in Z[8]. If c is of type i and c = UV, then
2 = Nm(c) = Nm(U)Nm(V) ∈ Z implies that either U or V is a unit.

Finally, it remains to see that all primes of Z[8] are of one of these types. Let c = 0 + 18 ∈ Z[8] be prime, and let
the factorisation of Nm(c) = cc̄ = ?1 · · · ?A ∈ Z. This shows that c divides some prime, say ?1, so Nm(c) divides
Nm(?1) = ?2

1. If 0
2 + 12 = Nm(c) = ?1, then c is of type i or ii. If Nm(c) = ?2, then c/? is a unit in Z[8] so c is of

type iii.

3.2 Lattices
The inclusion Z[8] ⊂ C, considering the Gaussian integers as lattice points in the complex plane, was useful in

the proof of theorem 3.1. The extension of this perspective to arbitrary number fields is essential to algebraic number
theory. For instance, it will enable us to prove that the class number of a number field is finite.

Definition 3.5. Let+ be an =-dimensional vector space over R. We say Γ ⊂ + is a lattice if Γ = ⊕<
8=1ZE8 as a Z-module,

where the set {E8 : 8 = 1, . . . , <} is linearly independent over  . If < = dim+ , we say Γ is a full lattice.

Example 3.6. Z is a lattice in R, and more generally, ZG = {IG : I ∈ Z} is a lattice in R for any G ∈ R. However,
Z[
√

2] = Z + Z
√

2 is not a lattice in R.

Definition 3.7. The fundamental domain/mesh of a lattice Γ = ⊕<
8=1ZE8 is

Φ =

{ <∑
8=1

G8E8 : 0 ≤ G8 < 1
}
.

The volume of Γ is defined as the volume of its fundamental domain.

By construction, the translates W +Φ are pairwise disjoint for each W ∈ Γ.
Remark. Let � be a matrix whose column vectors form a basis for Γ. Then, vol(Φ) =

√
det(�) �). If Γ is a full lattice,

then vol(Φ) = det(�).

Proposition 3.8. The following are equivalent for a lattice Γ ⊂ + .

1. Γ is full.

2. The translates W +Φ for W ∈ Γ cover + .
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3. There exists a bounded subset " ⊂ + such that the translates " + W for W ∈ Γ cover + .

Proof. The equivalence of 1 and 2 is left as an exercise, and the implication 2 =⇒ 3 is immediate. Suppose " ⊂ +
is a bounded set whose translates W + " cover + . Let +0 be the subspace of + spanned by Γ. We want to show that
+0 = + . Let E ∈ + be arbitrary, and for each = ∈ N, =E = 0= + W= for some 0= ∈ " and W= ∈ Γ. Since " is bounded,
=−10= converges to 0, and since +0 is closed,

E = lim
=→∞

=−10= + lim
=→∞

=−1W= = lim
=→∞

=−1W= ∈ +0.

Lemma 3.9. An additive subgroup Γ of + is a lattice if and only if it is discrete, i.e. every W ∈ Γ has a neighbourhood
* ⊂ + such that* ∩ Γ = {W}.

Proof. First, suppose Γ is a discrete subgroup of + . We will show that Γ is closed. Let* be a neighbourhood of 0 such
that* ∩ Γ = {0}, and* ′ ⊂ * another neighbourhood of 0 such that* ′ −* ′ ⊂ *. Suppose G ∉ Γ is a limit point of Γ.
Then, there exist distinct elements W1, W2 ∈ Γ ∩ (G +* ′). However, 0 ≠ W1 − W2 ∈ * ′ −* ′ ⊂ *, a contradiction.

INCOMPLETE

Theorem 3.10 (Minkowski’s lattice point theorem). Let + be an =-dimensional vector space over R, Γ a full lattice,
and - a centrally symmetric, convex subset of + . If vol(-) > 2=vol(Γ), then - contains a nonzero lattice point of Γ.

Proof. Suppose that the sets
(

1
2- + W

)
are pairwise disjoint. We know that the translates of the fundamental mesh Φ

by Γ are disjoint and cover the space, so

vol(Φ) ≥
∑
W

vol
(
Φ∩

(
1
2
-+W

))
=

∑
W

vol
(
(Φ−W)∩1

2
-

)
= vol

(⋃
W

(Φ−W)∩1
2
-

)
= vol

(
1
2
-

)
= 2−=vol(-) > vol(Φ),

a contradiction.
There exist distinct elements W1, W2 ∈ Γ so that(

1
2
- + W1

)
∩

(
1
2
- + W2

)
≠ ∅,

so that
G1
2
+ W1 =

G2
2
+ W2 =⇒ W1 − W2 =

G2 − G1
2

∈ -,

where the last inclusion follows as G2−G1
2 is the midpoint of G2 and −G1.

Exercise 53. With the same notation as above, give an example of a centrally symmetric convex set - such that
vol(-) = 2=vol(Γ), but - does not contain a nonzero lattice point.
Exercise 54. Show that if we assume that - is also closed, then the lattice point theorem holds even if vol(-) =
2=vol(Γ).15

Minkowski’s lattice point theorem, though not difficult to state or prove, is the foundation for a branch of number
theory called the ‘geometry of numbers’. Let’s look at a cute application of the lattice point theorem.

Theorem 3.11. Every positive integer can be written as the sum of four squares.

First, convince yourself that it suffices to show that every odd prime can be written as the sum of four squares.
Exercise 55. If =, < ∈ N can be written as the sum of four squares, so can their product =<.

15Hint: if - is closed, then - =
⋂
n→0 (1 + n )- .
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Proof of theorem 3.11. Consider the polynomial

-2 + .2 + 1 ≡ 0 (mod ?).

-2 and (−1−.2) take (? +1)/2 distinct values each as they run through the integers {0, . . . , ?−1}, so for some choice
of G, H ∈ {0, . . . , ? − 1}, we must have G2 + H2 + 1 ≡ 0 (mod ?). Let Γ ⊂ Z4 be the lattice defined by

Γ =

{
(0, 1, 2, 3) : 2 ≡ 0G + 1H (mod ?), 3 ≡ 1G − 0H (mod ?)

}
.

Then, ?Z4 ⊂ Γ ⊂ Z4, and Γ/?Z4 is 2-dimensional over F? , so |Z4 : Γ| = ?2. It follows that vol(Γ) = ?2.
Let - be the closed ball of radius A centered at the origin, for some choice of 2? > A2 > 1.9?. Then,

vol()) = c2A4

2
> 16?2 = 24vol(Γ).

So ) contains a nonzero lattice point (0, 1, 2, 3) ∈ Γ, and 0 < 02 + 12 + 22 + 32 ≤ A2 < 2? by construction. Further,

02 + 12 + 22 + 32 ≡ 02 + 12 + (0G + 1H)2 + (1G − 0H)2 (mod ?)
≡ 02 (G2 + H2 + 1) + 12 (G2 + H2 + 1) ≡ 0 (mod ?).

Putting this together, 02 + 12 + 22 + 32 = ?.

3.3 The class number
Our goal is to prove that if  /Q is a finite extension, then |�; |, the class number of  , is finite. We will embed  

in a vector space + so that the image of any ideal � C O is a full lattice. (This seems sensible, as every ideal is after
all a free Z-module with the same rank as O , and this is the dimension of  .)

3.3.1 Additive Minkowski theory

Our vector space of choice will be  C =
∏
f C, where f varies over HomQ ( ,C).  C is not only a C-vector space,

but also a C-algebra under pointwise multiplication, and it is equipped with the standard Hermitian inner product

〈G, H〉 =
∑
f

GfHf .

We can define an involution � :  C →  C analogous to complex conjugation by

� : I → �I; (�I)f =
(
I
)
f
.

The fixed points of this involution play the role of the real numbers.

 R =
{
I ∈  C : �I = I

}
=

{
I ∈  C :

(
I
)
f
=

(
I
)
f

}
.

The Hermitian inner product 〈·, ·〉 restricts to a symmetric bilinear form on  R. We have a canonical embedding
j :  →  C

j : G →
(
fG

)
f

Of course, for G ∈  , f(G) = f(G), so j( ) ⊂  R.
We say an embedding d ∈ HomQ ( ,C) is real if g( ) ⊂ R, and complex otherwise. The conjugate of a complex

embedding is a different complex embedding, so the complex embeddings come in pairs. Let A be the number of real
embeddings, 2B the number of complex embeddings, and = = A + 2B the dimension of  C as a C-vector space. Fix a
representative f from each pair of complex embeddings. For ease of notation, d will denote a real embedding, f a
complex embedding from our representative family, and f the corresponding conjugate embedding.
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A standard basis of  R is given by {4g : g ∈ HomQ ( ,C)}, where(
4d

)
d
= 1, d is a real embedding,(

4f

)
f
=

(
4f

)
f
= 1,(

4f

)
f
= 8,

(
4f

)
f
= −8, f is a representative complex embedding.

Define a linear map 5 :  R → R= by(
5 I

)
d
= Id for d real, and(

5 I
)
f
= '4(If) and

(
5 I

)
f
= �<(If) for f complex.

Exercise 56. Show that:

i. 5 maps the standard basis of  R to the standard basis of '=.

ii. if ) is the transition matrix from the standard basis of  R to that of R=, then | det()) | = 2B .16

Proposition 3.12. 5 is a vector space isomorphism, and 5 transforms the Euclidean inner product 〈·, ·〉 into the scalar
product (·, ·) by

〈G, H〉 = ( 5 G, 5 H) =
∑

g∈HomQ ( ,C)
ng ( 5 G)g ( 5 H)g : G, H ∈  R

where nd = 1 for d real, and nf = nf = 2 for f complex.

Proof. That 5 is a vector space isomorphism is easily checked by taking a basis of  R. The transformation of the
Euclidean inner product to what we will call the canonical metric is more interesting. Let

(
Gg

)
,
(
Hg

)
∈  R. Consider

the terms in the inner product 〈G, H〉. For a real embedding d, GdHd = GdHd = ( 5 G)d ( 5 H)d. For a complex embedding
f, two terms appear in the inner product:

GfHf + GfHf = GfHf + GfHf = 2Re(GfHf) = 2
(
( 5 G)f ( 5 H)f + ( 5 G)f ( 5 H)f

)
.

3.3.2 Ideal norms and the class group

Now that we know that  R is an =-dimensional vector space over R, we want the ideals of O to form lattices under
this embedding.

Definition 3.13. The absolute norm of a nonzero ideal � C O is Nm� = |O : � |.

Exercise 57. Show that if � is nonzero, then Nm� is finite.
Exercise 58. Show that if 0 ≠ � C O , then j(�) is a full lattice in  R.

The next proposition shows that the ideal norm agrees with Nm /Q for elements of O .

Proposition 3.14. If 0 ∈ O ,
Nm

(
〈0〉

)
=

��Nm /Q (0)
��.

Proof. Let {l1, . . . , l=} be an integral basis of O , so that {0l1, . . . , 0l=} is a basis of 〈0〉. The matrix )0 of
multiplication by 0 is also the transition matrix from the basis {l1, . . . , l=} to {0l1, . . . , 0l=}. So,

Nm /Q (0) = det()0) = |O : 〈0〉|.

16Hint: what are the elementary row operations to obtain ) −1 from the identity?
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Lemma 3.15. Let � C O have prime factorisation � = p01
1 . . .p

0A
A . Then,

Nm(�) = Nm(p1)01 . . .Nm(pA )0A .

Proof. By the Chinese Remainder theorem, we can reduce this to showing that Nm(p0) = Nm(?)0 for prime ideals.
By unique prime factorisation, p8 ≠ p8+1. Let 1 ∈ p8 \ p8+1. If 〈p8+1, 1〉 is a proper ideal in p8 , then p−8 〈p8+1, 1〉 is a
proper ideal in O containing p = p8+1p−8 , a contradiction. So, p8+1/p8 is a 1-dimensional vector space over O /p:
p8+1/p8 � O /p. Finally,

Nm(p0) = |O : p0 | = |O : p| · |p : p2 | · · · |p0−1 : p0 | = |O : p|0 = Nm(p)0 .

It follows that Nm(�)Nm(�) = Nm(��) for integral ideals. By defining Nm(�−1) = Nm(�) for integral ideals �, we
can extend this multiplicatively to all fractional ideals.

Corollary 3.16. There are at most finitely many integral ideals of O with a given norm.

Proof. If p is a nonzero prime ideal of O , then p ∩ Z = 〈?〉 for some prime ? ∈ Z, and |O : p | = ? 5 for some
positive integer 5 . If p∩Z = 〈?〉, then p divides ?O . So there are at most finitely many ideals p such that p∩Z = 〈?〉
for a given prime ? ∈ Z. By the multiplicativity of the ideal norm and unique factorisation in Z, it follows that for any
" > 0, there are at most finitely many ideals � C O with Nm(�) ≤ " .

Proposition 3.17. If 0 ≠ � C O , then j(�) is a full lattice in  R with volume
√
|3 |Nm(�).

Proof. Let {U1, . . . , U=} be a Z-basis for � inO . Let HomQ ( ,C) = {g1, . . . , g=} and � =
(
g8U 9

)
. By proposition 2.18,

3 (�) = det(�)2 = |O : � |23 = Nm(�)23 .

So,

vol(Γ) = det
(
〈jU8 ,jU 9〉

)1/2
= det

( =∑
;=1

g;U8 · g;U 9
)1/2

= det
(
��̄)

)1/2
=

�� det(�)
�� = √

|3 |Nm(�).

Theorem 3.18. Let 0 ≠ � C O . Choose real numbers 2g > 0 for each g ∈ HomQ ( ,C) such that 2g = 2g , and∏
g

2g >

(
2
c

)B
|3 |1/2Nm(�).

Then, there is a nonzero 0 ∈ � with |g(0) | < 2g for each g.

Proof. Define the centrally symmetric and convex set

- = {I ∈  R : |Ig | < 2g ,∀g}.

Then,
5 (-) = {G ∈ R= : |Gd | < 2d, G2

f + G2
f
< 22

f}.

By proposition 3.12 and the exercise preceding it, if vol= denotes the Lebesgue measure on R=,

vol(-) = 2Bvol= ( 5 (-)) = 2B ·
∏
d

22d
∏
f

(c2f)2 = 2A+BcB
∏
g

2g .

The hypothesis then implies that vol(-) > 2=vol(j(�)), so byMinkowski’s lattice point theorem, - contains a nonzero
element j(0) for 0 ∈ �. By construction, |g(0) | < 2g for each g.

Corollary 3.19. For any nonzero � C O , ∃ a nonzero 0 ∈ � with Nm /Q (0) ≤ (2/c)B |3 |1/2Nm(�).
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Proof. For any n > 0, we can choose real numbers 2g > 0 such that 2g = 2g and∏
g

2g =

(
2
c

)B
|3 |1/2Nm(�) + n .

There exists a corresponding element 0 n ∈ � such that |Nm /Q (0 n ) | < (2/c)B |3 |1/2Nm(�) + n . Since |Nm /Q (0 n ) |
is a positive integer, there exists 0 ∈ � such that |Nm /Q (0) | ≤ (2/c)B |3 |1/2Nm(�).

Theorem 3.20. |�; | < ∞.

Proof. We claim that if " = (2/c)B
√
|3 |, then every class in the ideal class group has a representative with norm

≤ " . It follows from the corollary that there are finitely many classes in the class group.
Choose a representative � for some class in �; . There exists 2 ∈ O such that � = 2�−1 C O . By corollary 3.19,

there is a nonzero element 0 ∈ � such that

|Nm /Q (0) | · Nm(�)−1 = Nm(0�−1) = Nm(02−1�) ≤
(

2
c

)B
|3 |1/2.

02−1� is a fractional ideal in the same class as � with norm at most " , concluding the proof.

The behaviour of the ideal class groups is mostly unpredictable; it is not even known if there are infinitely many
number fields with class number 1. We do know that the only imaginary quadratic fields (Q[

√
�] with � < 0 and

squarefree) with class number 1 occur for � = −1,−2,−3,−7,−11,−19,−43,−67,−163.
The role of the class number in Q[Z?], where Z? is a primitive ?th root of unity, is closely linked to Fermat’s Last

Theorem. Just as we studied G2 + H2 = ? as a factorisation in Z[8], we study G? + H? = I? as a factorisation in Z[Z?]:

H · H · · · H = (I − G) (I − Z?G) · · · (I − Z ?−1
? G).

If Z[Z?] is a UFD, this gives two nontrivial factorisations of the same element, which is a contradiction. Unfortunately,
the class number Q[Z?] need not always be equal to 1. The least counterexample to this is Q[Z23] which has class
number 3.
Exercise 59.

i. Suppose the class � C O in �; has order <, i.e. �< = 〈U〉 for some U ∈ O . Set V = U1/< and ! =  [V].
Show that �O! = 〈V〉 in O! .

ii. Show that for any finite extension  /Q, there is a finite extension !/ in which every ideal of  becomes
principal.

iii. Show that the ring Ω of all algebraic integers in C is a Bézout domain: every finitely generated ideal is principal.

3.3.3 An application to the discriminant

Theorem 3.21. If  is an extension of Q of degree =, then

|3 |1/2 ≥
==

=!

(
c

4

)=/2
.

As a consequence, if  is a nontrivial extension of Q, then |3 | > 1.

Proof. For C > 0, define
-C = {I ∈  R :

∑
g

|Ig | ≤ C}.

We will compute the Lebesgue volume 5 (-C ) in R=, as vol(-C ) = 2Bvol( 5 (-C )). Since 5 (-C ) is symmetric about the
A real axes, vol( 5 (-C )) = 2Avol(.C ), where

.C = {I ∈ R= :
∑
g

|Ig | ≤ C, Id ≥ 0}.
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If f1, . . . , fB are the representative complex embeddings, we change variables to polar coordinates so that If8 =
A8
2 4
8 \8 .

The Jacobian for this change is A8/4. Integrating over the variables \8 for 0 ≤ \8 ≤ 2c,

vol(-C ) = 2A+B4−B (2c)B
∫
/

A1 . . . AB3G1 . . . 3GA 3A1 . . . 3AB ,

where

/ = {(G1, . . . , GA , A1, . . . , AB) ∈ RA+B : G8 , A8 ≥ 0,
A∑
8=1

G8 +
B∑
8=1

A8 ≤ C}.

Denote the integral as,A ,B (C). Since,A ,B (C) = C=,A ,B (1), we estimate,A ,B (1) first. The condition
∑A
8=1 G8+

∑B
8=1 A8 ≤ 1

is equivalent to
∑A
8=2 G8 +

∑B
8=1 A8 ≤ 1 − G1. So,

,A ,B (1) =
∫ 1

0
,A−1,B (1 − G1)3G1

=

∫ 1

0
(1 − G1)=,A−1,B (1)3G1

=
1
=
,A−1,B (1).

By induction,

,A ,B (1) =
1

=(= − 1) · · · (= − A + 1),0,B (1)

and now we attack the second set of variables in the same way.

,0,B (1) = ,0,B−1 (1)
∫ 1

0
A1 (1 − A1)2B−23A1

=
1
(2B)!,0,0 (1) =

1
(2B)! .

So,,A ,B (C) = C=/=!, yielding

vol(-C ) = 2AcB
C=

=!
.

Choose C > 0 so that vol(-C ) > 2=vol(j(O )) = 2= |3 |1/2. Then, there exists U ∈ O such that |g(U) | ≤ C for all g.
Then |Nm /Q (U) | ≤ C=/== by the inequality between arithmetic and geometric means. Further,

vol(-C ) = 2AcB
C=

=!
≥ 2= |3 |1/2

C= ≥ =!
22B

cB
|3 |1/2.

Choose C so that equality is achieved, and

1 ≤ |Nm(0) | ≤ C=

==
=
=!
==

4B

c2 |3 |
1/2

=⇒ |3 |1/2 ≥
==

=!

(
c

4

)B
≥ =

=

=!

(
c

4

)=/2
.

If  is a nontrivial extension of Q, then = ≥ 2, so |3 | > 1.

3.4 Dirichlet’s Unit theorem
Given a number field  , we want to determine the structure of * = O×

 
, referred to as the group of units of  .

Recall that * = {0 ∈ O : Nm /Q (0) = ±1}. It is clear that * contains the finite group `( ) of the roots of unity
in  . In general though,* is not finite.

Recall we had A real embeddings of  into C and B pairs (f, f) of complex embeddings. We want to first show
that * is a finitely generated abelian group, and use the fundamental theorem of finitely generated abelian groups to
prove
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Theorem 3.22 (Dirichlet’s unit theorem).
* � `( ) ⊕ ZA+B−1.

3.4.1 Multiplicative Minkowski theory

Under the map j :  →  C,  × is embedded in  ×
C
, where

 ×C =
{(
Ig

)
: Ig ≠ 0,∀g

}
.

It is clear that  ×
C
is a group under coordinate-wise multiplication, and the restrictionj :  × →  ×

C
is a homomorphism

of multiplicative groups. Define a homomorphism Nm :  ×
C
→ C× by

Nm
(
Ig

)
=

∏
g

Ig .

The composition Nm ◦j on  × is just Nm /Q.
We pass from multiplicative groups to additive groups with a logarithm. Define a homomorphism C× → R by

I → log |I |,

inducing a surjective homomorphism
ℓ :  ×C →

∏
g

R

Its restriction to  ×R yields
ℓ( ×R) =

{
I ∈

∏
g

R : Ig = Ig ,∀g
}
.

ℓ( ×R) to R
A+B as an R-vector space. Define a ‘trace’ map, Tr : ℓ( ×R) → R, as the sum of the coordinates. This is all a

convoluted way of setting up the following commutative diagram.

 ×  ×R ℓ( ×R)

Q× R× R

j

Nm /Q

ℓ

Nm Tr
log | · |

3.4.2 The group of units

What happens to* in this commutative diagram? Looking at the “kernels” of the vertical arrows, we have

* = {0 ∈ O : Nm /Q (0) = ±1},
( = {I ∈  ×R : NmI = ±1},
� = {G ∈ ℓ( ×R) : TrG = 0}.

We have the homomorphisms

* ( �
j ;

and the composition _ : * → �. Let Γ = _(* ) ⊂ ℓ( ×R).

Proposition 3.23. The sequence
1→ `( ) → * 

_−→ Γ→ 0

is exact.

Proof. The only thing we need to show is that ker(_) = `( ). If Z ∈ `( ) and g ∈ HomQ ( ,C), then log |gZ | =
log 1 = 0. So _(`( )) = 0.

Conversely, suppose D ∈ * and _(D) = 0. Equivalently, |g(D) | = 1 for all g ∈ HomQ ( ,C). By an earlier exercise,
since D is an algebraic integer all of whose Galois conjugates have absolute value 1, D is a root of unity.
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Vigyázz!. We have shown that* �̀ ( ) � Γ. This does not yet imply that* � `( ) × Γ.

Lemma 3.24. Up to multiplication by units, there are only finitely many U ∈ O of a given norm Nm /Q (U) = 0.

Proof. Nm /Q (U) = Nm〈U〉, and there are only finitely many ideals of a given norm.

Theorem 3.25. � is an (A + B − 1)-dimensional real vector space, and Γ is a complete lattice in it. As a consequence,
Γ � ZA+B−1.

Proof. � is the trace-zero hyperplane in ℓ( ×R), which is an (A + B)-dimensional real vector space, so the first part of
the theorem is true.

We will first show that Γ is a discrete subgroup of �. _ : * → � is the restriction of the mapping  ×
j
−→  ×

C

ℓ−→∏
g R. It suffices to show that for any 2 > 0, the ball

�2 =

{
G ∈

∏
g

R : |Gg | < 2,∀g
}

contains at most finitely many points of Γ. The preimage of this under ℓ is

ℓ−1 (�2) =
{
I ∈  ×C : 4−C < |Ig | < 4C ,∀g

}
.

SincejO is a lattice in  R, ℓ−1 (�2) contains at most finitely many points ofj(* ), thus �2 contains at most finitely
many points of Γ.

The crux of the proof is to show that Γ is a full lattice in �, which we will do by constructing a bounded set " ⊂ �
such that the translates " + W cover � (see proposition 3.8). We will do this by constructing a bounded set ) ⊂ ( so
that the multiplicative translatesj(D)) for D ∈ * cover (. If G =

(
Gg

)
∈ ) , since the absolute values |Gg | are bounded

above, they must be bounded below away from 0. So the image " = ℓ()) is the set we want.
Choose real numbers 2g > 0 with 2g = 2g so that

� =
∏
g

2g >

(
2
c

)B√
|3 |,

and define
- =

{
I ∈  R : |Ig | < 2g ,∀g

}
.

For any H ∈ (, the multiplicative translate is

-H =

{
I ∈  R : |Ig | < 2′g ,∀g

}
,

where 2′g = 2g |Hg |, and
∏
2′g =

∏
2g

∏ |Hg | = �. So, there exists a nonzero 0 ∈ O such that j(0) ∈ -H.
Since 0 < |Nm /Q (0) | ≤ �, we can choose a finite set of representatives {01, . . . , 0# } so that each element of
{0 ∈ O : j(0) ∈ -H, H ∈ (} is associate to one of the 08 (by lemma 3.24). Finally, set

) = ( ∩
#⋃
8=1
(j08)−1-.

Since - is bounded, so is ) , and it remains to show that

( =
⋃
D∈* 

j(D)).

If H ∈ (, then there exists D ∈ * and 08 so that j(D08) ∈ -H−1. Equivalently,for some G ∈ - ,

j(D08) = GH−1

=⇒ H = Gj(D−1)j(0−1
8 ) ∈ j(D−1)).
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Finally,

Proof of theorem 3.22. What remains is an elementary exercise in group theory: to show that* �̀ ( ) � Z
A+B−1 =⇒

* � `( )×ZA+B−1. Let< = A+ B−1, write Z< multiplicatively, and let {V1, . . . , V<} ⊂ * be a set of free generators
of * �̀ ( ). Let � ≤ * be the group generated by {V1, . . . , V<}. Since `( )� = * , we only need to show that
`( ) ∩ � = {1}. Suppose V01

1 · · · V
0<
< ∈ `( ). Then, V01

1 · · · V
0<
< `( ) = `( ) in the quotient group* �̀ ( ). Since

the quotient group is a free group, this is only possible when 01 = · · · 0< = 0. This shows that � = Z< = ZA+B−1 so
* = `( ) × � = `( ) × ZA+B−1.

We will call generators of ZA+B−1 in* fundamental units of  .
Example 3.26. Let � > 1 be a squarefree integer and  = Q[

√
�]. Then HomQ ( ,C) = HomQ ( ,R), A = 2 and

B = 0. By the unit theorem,* = `( ) × Z. Since � > 1, `( ) = {±1} � Z2. Which unit generates an infinite cyclic
group?

Let 3 = 3 . Let 0, 1 > 0 be the unique minimal integer solution of -2 − 3.2 = −4—or if this has no solution, of
-2 − 3.2 = 4. Then,

n =
0 + 1

√
3

2
is the fundamental unit of  . Check that it actually generates an infinite cyclic group.
Exercise 60. Let � < −1 be a squarefree integer. What are the units in Q[

√
�]?

4 Closing remarks

Minkowski theory sets up the language we need to study number fields. There are (at least) two types of questions
we can ask about them. The first, perhaps most natural one, is: can we classify/characterise all “nice” number fields?
The second: what do we learn about the structure of the field itself?

The first fundamental theorem of algebraic number theory, the Kronecker–Weber theorem, answers a question of
the first type. It is not too complicated to prove that any finite cyclotomic extension of Q (obtained by adjoining a root
of unity), has abelian Galois group. The Kronecker–Weber theorem is a sort of converse: every finite extension of Q
with abelian Galois group is contained in a cyclotomic extension.

To answer the second question, it turns out that the prime ideals of a number field play an integral role. This will
be evident in the proof of the Kronecker–Weber theorem, as the global case follows from the local case for finite
extensions of ?-adic numbers.

While the Kronecker–Weber theorem characterises the maximal abelian extension in terms of its subextensions,
class field theory characterises this extension in terms of the structure of the base field. It is a surprising result that
if  ab is the maximal abelian extension of a nonarchimedean local field, then Gal( ab/ ) is isomorphic to  ×, and
this isomorphism can be constructed. It is perhaps even more surprising that this statement has a cohomological
formulation. Perhaps someday I will update these notes to include a complete presentation of Kronecker–Weber.
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